|
M. Riesz-Schur-type inequalities for entire functions of exponential type
Michael I. Ganzburga, Paul Nevaib, Tamás Erdélyic a Hampton University
b KAU and Upper Arlington (Columbus), Ohio, USA
c Texas A&M University
Abstract:
We prove a general M. Riesz-Schur-type inequality for entire functions of exponential type. If $f$ and $Q$ are two functions of exponential types $\sigma > 0$ and $\tau \geqslant 0$, respectively, and if $Q$ is real-valued and the real zeros of $Q$, not counting multiplicities, are bounded away from each other, then
$$
|f(x)|\le (\sigma+\tau) (A_{\sigma+\tau}(Q))^{-1/2}\|Q f\|_{\mathrm C(\mathbb R)},\qquad x\in \mathbb R,
$$
where
$$
A_s(Q) \stackrel{\mathrm{def}}{=}\inf_{x\in\mathbb R} \bigl([Q'(x)]^2+s^2 [Q(x)]^2\bigr).
$$
We apply this inequality to the weights $Q(x)\stackrel{\mathrm{def}}{=} \sin (\tau x)$ and
$Q(x) \stackrel{\mathrm{def}}{=} x$ and describe the extremal functions in the corresponding inequalities.
Bibliography: 7 titles.
Keywords:
M. Riesz-Schur-type inequalities, Duffin-Schaeffer inequality, entire functions of exponential type.
Received: 15.04.2014
Citation:
Michael I. Ganzburg, Paul Nevai, Tamás Erdélyi, “M. Riesz-Schur-type inequalities for entire functions of exponential type”, Sb. Math., 206:1 (2015), 24–32
Linking options:
https://www.mathnet.ru/eng/sm8435https://doi.org/10.1070/SM2015v206n01ABEH004444 https://www.mathnet.ru/eng/sm/v206/i1/p29
|
Statistics & downloads: |
Abstract page: | 592 | Russian version PDF: | 316 | English version PDF: | 13 | References: | 53 | First page: | 27 |
|