Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 5, Pages 718–737
DOI: https://doi.org/10.1070/SM2015v206n05ABEH004476
(Mi sm8425)
 

This article is cited in 7 scientific papers (total in 7 papers)

Mechanical systems with closed orbits on manifolds of revolution

E. A. Kudryavtseva, D. A. Fedoseev

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study natural mechanical systems describing the motion of a particle on a two-dimensional Riemannian manifold of revolution in the field of a central smooth potential. We obtain a classification of Riemannian manifolds of revolution and central potentials on them that have the strong Bertrand property: any nonsingular (that is, not contained in a meridian) orbit is closed. We also obtain a classification of manifolds of revolution and central potentials on them that have the ‘stable’ Bertrand property: every parallel is an ‘almost stable’ circular orbit, and any nonsingular bounded orbit is closed.
Bibliography: 14 titles.
Keywords: Bertrand Riemannian manifold, surface of revolution, equator, Tannery manifold, Maupertuis' principle.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-1410.2012.1
Russian Foundation for Basic Research 13-01-00664-а
This research was supported by the Programme of the President of the Russian Federation for Support of Leading Scientific Schools (grant no. НШ-1410.2012.1) and by the Russian Foundation for Basic Research (grant no. 13-01-00664-a).
Received: 25.09.2014
Bibliographic databases:
Document Type: Article
UDC: 514.853
MSC: Primary 70F17; Secondary 53A20, 53A35, 70G45, 70H12
Language: English
Original paper language: Russian
Citation: E. A. Kudryavtseva, D. A. Fedoseev, “Mechanical systems with closed orbits on manifolds of revolution”, Sb. Math., 206:5 (2015), 718–737
Citation in format AMSBIB
\Bibitem{KudFed15}
\by E.~A.~Kudryavtseva, D.~A.~Fedoseev
\paper Mechanical systems with closed orbits on manifolds of revolution
\jour Sb. Math.
\yr 2015
\vol 206
\issue 5
\pages 718--737
\mathnet{http://mi.mathnet.ru//eng/sm8425}
\crossref{https://doi.org/10.1070/SM2015v206n05ABEH004476}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3354992}
\zmath{https://zbmath.org/?q=an:1397.70025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206..718K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358449000004}
\elib{https://elibrary.ru/item.asp?id=23421657}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938149678}
Linking options:
  • https://www.mathnet.ru/eng/sm8425
  • https://doi.org/10.1070/SM2015v206n05ABEH004476
  • https://www.mathnet.ru/eng/sm/v206/i5/p107
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:505
    Russian version PDF:161
    English version PDF:20
    References:52
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024