Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2004, Volume 195, Issue 8, Pages 1205–1234
DOI: https://doi.org/10.1070/SM2004v195n08ABEH000841
(Mi sm841)
 

This article is cited in 15 scientific papers (total in 15 papers)

Holomorphic solution semigroups for Sobolev-type equations in locally convex spaces

V. E. Fedorov

Chelyabinsk State University
References:
Abstract: The problem of the existence of an exponentially bounded solution semigroup strongly holomorphic in a sector is studied for a Sobolev-type linear equation
\begin{equation} L\dot u=Mu \end{equation}
with continuous operator $L\colon\mathfrak U\to\mathfrak F$, $\ker L\ne\{0\}$, and closed densely defined operator $M\colon\operatorname{dom}M\to\mathfrak F$, where $\mathfrak U$ and $\mathfrak F$ are sequentially complete locally convex spaces. It is shown that the condition of the $(L,p)$-sectoriality of the operator $M$, which generalizes the well known condition of sectoriality, is necessary and sufficient for the existence of such semigroups degenerate at the $M$-associated vectors of the operator $L$ of height $p$ and lower and the existence of pairs of invariant subspaces of the operators $L$ and $M$. Generalizations of Yosida's theorem and results on the existence of a holomorphic solution semigroup for equation (1) in Banach spaces are obtained. These results are used in the study of the weakened Cauchy problem for equation (1) and for the corresponding non-linear equation. One application of the abstract results is a theorem on sufficient conditions for the solubility of the Cauchy problem for a class of equations in Fréchet spaces of a special kind. It is used in the analysis of the periodic Cauchy problem for a partial differential equation with displacement not solved with respect to the time derivative.
Received: 25.07.2003 and 30.01.2004
Bibliographic databases:
UDC: 517.9
MSC: Primary 47D06; Secondary 47N20
Language: English
Original paper language: Russian
Citation: V. E. Fedorov, “Holomorphic solution semigroups for Sobolev-type equations in locally convex spaces”, Sb. Math., 195:8 (2004), 1205–1234
Citation in format AMSBIB
\Bibitem{Fed04}
\by V.~E.~Fedorov
\paper Holomorphic solution semigroups for Sobolev-type equations in~locally convex spaces
\jour Sb. Math.
\yr 2004
\vol 195
\issue 8
\pages 1205--1234
\mathnet{http://mi.mathnet.ru//eng/sm841}
\crossref{https://doi.org/10.1070/SM2004v195n08ABEH000841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2101340}
\zmath{https://zbmath.org/?q=an:1082.47034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000225029800010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-8744254400}
Linking options:
  • https://www.mathnet.ru/eng/sm841
  • https://doi.org/10.1070/SM2004v195n08ABEH000841
  • https://www.mathnet.ru/eng/sm/v195/i8/p131
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025