Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 10, Pages 1473–1491
DOI: https://doi.org/10.1070/SM2014v205n10ABEH004426
(Mi sm8397)
 

This article is cited in 3 scientific papers (total in 3 papers)

A holomorphic version of the Tate-Iwasawa method for unramified $L$-functions. I

A. N. Parshin

Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Using the Tate-Iwasawa method the problem of meromorphic continuation and of the existence of a functional equation can be solved for the zeta and $L$-functions of one-dimensional arithmetical schemes. A new version of this method is put forward, which looks at the case of curves over a finite field and of unramified $L$-functions. The proof is based on a reduction of the problem to a Cousin problem on the Riemann sphere which is related to the curve under consideration.
Bibliography: 16 titles.
Keywords: zeta function, analytic continuation, Poisson formula, sum of residues, Cousin problem.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00178-a
13-01-12420-офи-м2
Ministry of Education and Science of the Russian Federation НШ-2998.2014.1
Received: 25.06.2014
Bibliographic databases:
Document Type: Article
UDC: 511.68+512.626
MSC: 11M41
Language: English
Original paper language: Russian
Citation: A. N. Parshin, “A holomorphic version of the Tate-Iwasawa method for unramified $L$-functions. I”, Sb. Math., 205:10 (2014), 1473–1491
Citation in format AMSBIB
\Bibitem{Par14}
\by A.~N.~Parshin
\paper A holomorphic version of the Tate-Iwasawa method for unramified $L$-functions.~I
\jour Sb. Math.
\yr 2014
\vol 205
\issue 10
\pages 1473--1491
\mathnet{http://mi.mathnet.ru//eng/sm8397}
\crossref{https://doi.org/10.1070/SM2014v205n10ABEH004426}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3289229}
\zmath{https://zbmath.org/?q=an:06406531}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205.1473P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000346573300005}
\elib{https://elibrary.ru/item.asp?id=22834489}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919683473}
Linking options:
  • https://www.mathnet.ru/eng/sm8397
  • https://doi.org/10.1070/SM2014v205n10ABEH004426
  • https://www.mathnet.ru/eng/sm/v205/i10/p107
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:618
    Russian version PDF:195
    English version PDF:22
    References:61
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024