Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 7, Pages 893–920
DOI: https://doi.org/10.1070/SM2015v206n07ABEH004482
(Mi sm8380)
 

This article is cited in 4 scientific papers (total in 4 papers)

A minimax approach to mean field games

Yu. V. Averboukhab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University, Ekaterinburg
References:
Abstract: An initial boundary value problem for the system of equations of a determined mean field game is considered. The proposed definition of a generalized solution is based on the minimax approach to the Hamilton-Jacobi equation. We prove the existence of the generalized (minimax) solution using the Nash equilibrium in the auxiliary differential game with infinitely many identical players. We show that the minimax solution of the original system provides the $\varepsilon$-Nash equilibrium in the differential game with a finite number of players.
Bibliography: 34 titles.
Keywords: mean-field-games, Hamilton-Jacobi equations, minimax solution, Nash equilibrium, differential game with infinitely many players.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-07909
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 15-01-07909).
Received: 21.04.2014 and 22.01.2015
Bibliographic databases:
Document Type: Article
UDC: 517.978.4
MSC: Primary 91A06, 91A13, 91A23; Secondary 49N70
Language: English
Original paper language: Russian
Citation: Yu. V. Averboukh, “A minimax approach to mean field games”, Sb. Math., 206:7 (2015), 893–920
Citation in format AMSBIB
\Bibitem{Ave15}
\by Yu.~V.~Averboukh
\paper A minimax approach to mean field games
\jour Sb. Math.
\yr 2015
\vol 206
\issue 7
\pages 893--920
\mathnet{http://mi.mathnet.ru//eng/sm8380}
\crossref{https://doi.org/10.1070/SM2015v206n07ABEH004482}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438582}
\zmath{https://zbmath.org/?q=an:1338.91028}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206..893A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000362272200001}
\elib{https://elibrary.ru/item.asp?id=23780222}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84943327300}
Linking options:
  • https://www.mathnet.ru/eng/sm8380
  • https://doi.org/10.1070/SM2015v206n07ABEH004482
  • https://www.mathnet.ru/eng/sm/v206/i7/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:702
    Russian version PDF:190
    English version PDF:38
    References:97
    First page:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024