Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2004, Volume 195, Issue 8, Pages 1073–1115
DOI: https://doi.org/10.1070/SM2004v195n08ABEH000838
(Mi sm838)
 

This article is cited in 26 scientific papers (total in 26 papers)

On Jackson's inequality for a generalized modulus of continuity in $L_2$

A. I. Kozko, A. V. Rozhdestvenskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The value of the sharp constant $\varkappa$ in the Jackson type inequality in the space $L_2(\mathbb T^d)$
\begin{equation} E_{n-1}(f)\leqslant\varkappa\overline\omega_\psi(f,T) \end{equation}
is studied for the generalized modulus of continuity
$$ \overline\omega_\psi(f,T)=\max_{t\in T}\biggl(\sum_{s}\psi(st)|\widehat f_s|^2\biggr)^{1/2}. $$
The value $\overset{*}{\varkappa}$ of the minimum sharp constant in inequality (1) is found.
A class of generalized moduli of continuity is introduced which contains the moduli $\widetilde\omega_{a,r}(f,\delta):=\sup_{0\leqslant t\leqslant\delta}\|\Delta_{a^{r-1}t}\dotsb \Delta_{at}\Delta_{t}f\|_2$, with even $a$. The relation $\varkappa=\overset{*}\varkappa$ is proved in this class for all $\delta\geqslant\pi/n$.
Received: 14.06.2002 and 10.11.2003
Bibliographic databases:
UDC: 517.518.8
MSC: 41A17
Language: English
Original paper language: Russian
Citation: A. I. Kozko, A. V. Rozhdestvenskii, “On Jackson's inequality for a generalized modulus of continuity in $L_2$”, Sb. Math., 195:8 (2004), 1073–1115
Citation in format AMSBIB
\Bibitem{KozRoz04}
\by A.~I.~Kozko, A.~V.~Rozhdestvenskii
\paper On~Jackson's inequality for a~generalized modulus of continuity in~$L_2$
\jour Sb. Math.
\yr 2004
\vol 195
\issue 8
\pages 1073--1115
\mathnet{http://mi.mathnet.ru//eng/sm838}
\crossref{https://doi.org/10.1070/SM2004v195n08ABEH000838}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2101337}
\zmath{https://zbmath.org/?q=an:1068.41026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000225029800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-8744284194}
Linking options:
  • https://www.mathnet.ru/eng/sm838
  • https://doi.org/10.1070/SM2004v195n08ABEH000838
  • https://www.mathnet.ru/eng/sm/v195/i8/p3
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025