Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 4, Pages 510–539
DOI: https://doi.org/10.1070/SM2015v206n04ABEH004468
(Mi sm8373)
 

This article is cited in 3 scientific papers (total in 3 papers)

Some properties of three-dimensional Klein polyhedra

A. A. Illarionov

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences
References:
Abstract: We study properties of three-dimensional Klein polyhedra. The main result is as follows. Let $\mathscr{L}_s(N)$ be the set of integer $s$-dimensional lattices with determinant $N$, and let $f'(\Gamma,k)$ be the set of edges $E$ of Klein polyhedra in the lattice $\Gamma$ satisfying $\#(\Gamma\cap E)=k+1$ (that is, the integer length of the edge $E$ is $k$). Then for any $k>1$,
$$ \frac{1}{\#\mathscr{L}_s(N)}\sum_{\Gamma\in\mathscr{L}_s(N)}f'(\Gamma,k)= C'_3(k)\cdot \ln^2 N+O_k(\ln N \cdot \ln\ln N), \qquad N\to \infty, $$
where $C'_3(k)$ is a positive constant depending only on $k$, and
$$ C'_3(k)=\frac{6}{\zeta(2)\zeta(3)}\cdot\frac{1}{k^3}+O\biggl(\frac{1}{k^4}\biggr). $$

Bibliography: 39 titles.
Keywords: lattice, Klein polyhedron, multidimensional continued fraction.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-9002 Бел_а
Russian Academy of Sciences - Federal Agency for Scientific Organizations 15-I-4-047
This work was supported by the Russian Foundation for Basic Research (grant no. 14-01-9002 Бел_а) and by the Complex Programme for Fundamental Research "Far East" of the Far-Eastern Branch of the Russian Academy of Sciences (project no. 15-I-4-047).
Received: 08.04.2014
Bibliographic databases:
Document Type: Article
UDC: 511.36+511.9
MSC: 11H06, 11J70, 52C07
Language: English
Original paper language: Russian
Citation: A. A. Illarionov, “Some properties of three-dimensional Klein polyhedra”, Sb. Math., 206:4 (2015), 510–539
Citation in format AMSBIB
\Bibitem{Ill15}
\by A.~A.~Illarionov
\paper Some properties of three-dimensional Klein polyhedra
\jour Sb. Math.
\yr 2015
\vol 206
\issue 4
\pages 510--539
\mathnet{http://mi.mathnet.ru//eng/sm8373}
\crossref{https://doi.org/10.1070/SM2015v206n04ABEH004468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3354984}
\zmath{https://zbmath.org/?q=an:1327.11044}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206..510I}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356313700003}
\elib{https://elibrary.ru/item.asp?id=23421623}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84931313688}
Linking options:
  • https://www.mathnet.ru/eng/sm8373
  • https://doi.org/10.1070/SM2015v206n04ABEH004468
  • https://www.mathnet.ru/eng/sm/v206/i4/p35
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024