Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 11, Pages 1668–1682
DOI: https://doi.org/10.1070/SM2014v205n11ABEH004433
(Mi sm8362)
 

The symmetry groups of bifurcations of integrable Hamiltonian systems

E. I. Orlova

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Two-dimensional atoms are investigated; these are used to code bifurcations of the Liouville foliations of nondegenerate integrable Hamiltonian systems. To be precise, the symmetry groups of atoms with complexity at most 3 are under study. Atoms with symmetry group $\mathbb Z_p\oplus\mathbb Z_q$ are considered. It is proved that $\mathbb Z_p\oplus\mathbb Z_q$ is the symmetry group of a toric atom. The symmetry groups of all nonorientable atoms with complexity at most 3 are calculated. The concept of a geodesic atom is introduced.
Bibliography: 9 titles.
Keywords: integrable systems, atoms, finite groups.
Received: 19.03.2014 and 22.04.2014
Bibliographic databases:
Document Type: Article
UDC: 515.164.8+512.542
MSC: Primary 37J15; Secondary 37J35
Language: English
Original paper language: Russian
Citation: E. I. Orlova, “The symmetry groups of bifurcations of integrable Hamiltonian systems”, Sb. Math., 205:11 (2014), 1668–1682
Citation in format AMSBIB
\Bibitem{Orl14}
\by E.~I.~Orlova
\paper The symmetry groups of bifurcations of integrable Hamiltonian systems
\jour Sb. Math.
\yr 2014
\vol 205
\issue 11
\pages 1668--1682
\mathnet{http://mi.mathnet.ru//eng/sm8362}
\crossref{https://doi.org/10.1070/SM2014v205n11ABEH004433}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408644}
\zmath{https://zbmath.org/?q=an:06417742}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205.1668O}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348594700006}
\elib{https://elibrary.ru/item.asp?id=22834496}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921749397}
Linking options:
  • https://www.mathnet.ru/eng/sm8362
  • https://doi.org/10.1070/SM2014v205n11ABEH004433
  • https://www.mathnet.ru/eng/sm/v205/i11/p145
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024