Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 9, Pages 1264–1278
DOI: https://doi.org/10.1070/SM2014v205n09ABEH004417
(Mi sm8361)
 

This article is cited in 5 scientific papers (total in 5 papers)

The topology of integrable systems with incomplete fields

K. R. Aleshkin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Liouville's theorem holds for Hamiltonian systems with complete Hamiltonian fields which possess a complete involutive system of first integrals; such systems are called Liouville-integrable. In this paper integrable systems with incomplete Hamiltonian fields are investigated. It is shown that Liouville's theorem remains valid in the case of a single incomplete field, while if the number of incomplete fields is greater, a certain analogue of the theorem holds. An integrable system on the algebra $\mathfrak{sl}(3)$ is taken as an example.
Bibliography: 11 titles.
Keywords: integrable systems, incomplete fields, Liouville's theorem, Lie algebras.
Received: 17.03.2014
Bibliographic databases:
Document Type: Article
UDC: 517.938.5+514.763.2
MSC: 37C10, 37J35
Language: English
Original paper language: Russian
Citation: K. R. Aleshkin, “The topology of integrable systems with incomplete fields”, Sb. Math., 205:9 (2014), 1264–1278
Citation in format AMSBIB
\Bibitem{Ale14}
\by K.~R.~Aleshkin
\paper The topology of integrable systems with incomplete fields
\jour Sb. Math.
\yr 2014
\vol 205
\issue 9
\pages 1264--1278
\mathnet{http://mi.mathnet.ru//eng/sm8361}
\crossref{https://doi.org/10.1070/SM2014v205n09ABEH004417}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3288424}
\zmath{https://zbmath.org/?q=an:06406593}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205.1264A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000345219700002}
\elib{https://elibrary.ru/item.asp?id=22834506}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84910632776}
Linking options:
  • https://www.mathnet.ru/eng/sm8361
  • https://doi.org/10.1070/SM2014v205n09ABEH004417
  • https://www.mathnet.ru/eng/sm/v205/i9/p49
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024