Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2004, Volume 195, Issue 7, Pages 1017–1037
DOI: https://doi.org/10.1070/SM2004v195n07ABEH000836
(Mi sm836)
 

This article is cited in 25 scientific papers (total in 25 papers)

Newton's problem of the body of minimum mean resistance

A. Yu. Plakhov

University of Aveiro
References:
Abstract: Consider a body $\Omega$ at rest in $d$-dimensional Euclidean space and a homogeneous flow of particles falling on it with unit velocity $v$. The particles do not interact and they collide with the body perfectly elastically. Let $\mathscr R_\Omega(v)$ be the resistance of the body to the flow. The problem of the body of minimum resistance, which goes back to Newton, consists in the minimization of the quantity $(\mathscr R_\Omega(v)\mid v)$ over a prescribed class of bodies.
Assume that one does not know in advance the direction $v$ of the flow or that one measures the resistance repeatedly for various directions of $v$. Of interest in these cases is the problem of the minimization of the mean value of the resistance $\widetilde{\mathscr R}(\Omega) =\displaystyle\int_{S^{d-1}}(\mathscr R_\Omega(v)\mid v)\,dv$. This problem is considered $(\widetilde{\mathrm{P}}_d)$ in the class of bodies of volume 1 and $(\widetilde{\mathrm{P}}{}_d^c)$ in the class of convex bodies of volume 1. The solution of the convex problem $\widetilde{\mathrm{P}}{}_d^c$ is the $d$-dimensional ball. For the non-convex 2-dimensional problem $\widetilde{\mathrm{P}}_2$ the minimum value $\widetilde{\mathscr R}(\Omega)$ is found with accuracy $0.61\%$. The proof of this estimate is carried out with the use of a result related to the Monge problem of mass transfer, which is also solved in this paper. This problem is as follows: find $\displaystyle\inf_{T\in\mathscr T}\int_\Pi\mathrm{f}(\varphi,\tau;T(\varphi,\tau))\,d\mu(\varphi,\tau)$, where $\Pi=[-{\pi}/{2},{\pi}/{2}]\times [0,1]$, $d\mu(\varphi,\tau)=\cos\varphi\,d\varphi\,d\tau$, $\mathrm{f}(\varphi,\tau;\varphi',\tau') =1+\cos(\varphi+\varphi')$, and $\mathscr T$ is the set of one-to-one maps of $\Pi$ onto itself preserving the measure $\mu$.
Another problem under study is the minimization of $\overline{\mathscr R}(\Omega) =\displaystyle\int_{S^{d-1}}|\mathscr R_\Omega(v)|\,dv$. The solution of the convex problem $\overline{\mathrm P}{}_d^c$ and the estimate for the non-convex 2-dimensional problem $\overline{\mathrm P}_2$ obtained in this paper are the same as for the problems $\widetilde{\mathrm P}{}_d^c$ and $\widetilde{\mathrm P}_2$.
Received: 11.11.2003
Bibliographic databases:
UDC: 517.95
MSC: 49J10, 49Q10, 49Q20
Language: English
Original paper language: Russian
Citation: A. Yu. Plakhov, “Newton's problem of the body of minimum mean resistance”, Sb. Math., 195:7 (2004), 1017–1037
Citation in format AMSBIB
\Bibitem{Pla04}
\by A.~Yu.~Plakhov
\paper Newton's problem of the body of minimum mean resistance
\jour Sb. Math.
\yr 2004
\vol 195
\issue 7
\pages 1017--1037
\mathnet{http://mi.mathnet.ru//eng/sm836}
\crossref{https://doi.org/10.1070/SM2004v195n07ABEH000836}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2101335}
\zmath{https://zbmath.org/?q=an:1060.49029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000225029800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-8744276227}
Linking options:
  • https://www.mathnet.ru/eng/sm836
  • https://doi.org/10.1070/SM2004v195n07ABEH000836
  • https://www.mathnet.ru/eng/sm/v195/i7/p105
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024