Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 11, Pages 1529–1563
DOI: https://doi.org/10.1070/SM2014v205n11ABEH004428
(Mi sm8356)
 

This article is cited in 3 scientific papers (total in 3 papers)

Polynomial solutions of the Monge-Ampère equation

Yu. A. Aminov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov
References:
Abstract: The question of the existence of polynomial solutions to the Monge-Ampère equation $z_{xx}z_{yy}-z_{xy}^2=f(x,y)$ is considered in the case when $f(x,y)$ is a polynomial. It is proved that if $f$ is a polynomial of the second degree, which is positive for all values of its arguments and has a positive squared part, then no polynomial solution exists. On the other hand, a solution which is not polynomial but is analytic in the whole of the $x$$y$-plane is produced. Necessary and sufficient conditions for the existence of polynomial solutions of degree up to 4 are found and methods for the construction of such solutions are indicated. An approximation theorem is proved.
Bibliography: 10 titles.
Keywords: polynomials of two variables, existence of solutions, explicit expressions for solutions.
Funding agency Grant number
Russian Foundation for Basic Research 11-2012
6/Н-2013
Received: 06.03.2014 and 15.08.2014
Bibliographic databases:
Document Type: Article
UDC: 514.752.43+517.957
MSC: Primary 35C11, 35G20; Secondary 35J96
Language: English
Original paper language: Russian
Citation: Yu. A. Aminov, “Polynomial solutions of the Monge-Ampère equation”, Sb. Math., 205:11 (2014), 1529–1563
Citation in format AMSBIB
\Bibitem{Ami14}
\by Yu.~A.~Aminov
\paper Polynomial solutions of the Monge-Amp\`ere equation
\jour Sb. Math.
\yr 2014
\vol 205
\issue 11
\pages 1529--1563
\mathnet{http://mi.mathnet.ru//eng/sm8356}
\crossref{https://doi.org/10.1070/SM2014v205n11ABEH004428}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408639}
\zmath{https://zbmath.org/?q=an:06417737}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205.1529A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348594700001}
\elib{https://elibrary.ru/item.asp?id=22834491}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921739741}
Linking options:
  • https://www.mathnet.ru/eng/sm8356
  • https://doi.org/10.1070/SM2014v205n11ABEH004428
  • https://www.mathnet.ru/eng/sm/v205/i11/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:571
    Russian version PDF:219
    English version PDF:27
    References:114
    First page:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024