Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 12, Pages 1787–1814
DOI: https://doi.org/10.1070/SM2014v205n12ABEH004440
(Mi sm8343)
 

This article is cited in 1 scientific paper (total in 1 paper)

Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles

I. Kh. Sabitov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study infinitesimal bendings of surfaces of revolution with flattening at the poles. We begin by considering the minimal possible smoothness class $C^1$ both for surfaces and for deformation fields. Conditions are formulated for a given harmonic of a first-order infinitesimal bending to be extendable into a second order infinitesimal bending. We finish by stating a criterion for nonrigidity of second order for closed surfaces of revolution in the analytic class. We also give the first concrete example of such a nonrigid surface.
Bibliography: 15 entries.
Keywords: surfaces of revolution, pole, order of flattening, second-order infinitesimal bendings, rigidity.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-90415-УКРа
Received: 06.02.2014 and 28.08.2014
Bibliographic databases:
Document Type: Article
UDC: 514.772.35
MSC: 53A05
Language: English
Original paper language: Russian
Citation: I. Kh. Sabitov, “Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles”, Sb. Math., 205:12 (2014), 1787–1814
Citation in format AMSBIB
\Bibitem{Sab14}
\by I.~Kh.~Sabitov
\paper Second-order infinitesimal bendings of surfaces of revolution with flattening at the poles
\jour Sb. Math.
\yr 2014
\vol 205
\issue 12
\pages 1787--1814
\mathnet{http://mi.mathnet.ru//eng/sm8343}
\crossref{https://doi.org/10.1070/SM2014v205n12ABEH004440}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3309393}
\zmath{https://zbmath.org/?q=an:06417749}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205.1787S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000349436300007}
\elib{https://elibrary.ru/item.asp?id=22834503}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84923163013}
Linking options:
  • https://www.mathnet.ru/eng/sm8343
  • https://doi.org/10.1070/SM2014v205n12ABEH004440
  • https://www.mathnet.ru/eng/sm/v205/i12/p111
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024