|
This article is cited in 4 scientific papers (total in 4 papers)
The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces
N. N. Osipov St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
Abstract:
Rubio de Francia proved a one-sided Littlewood-Paley inequality for arbitrary intervals in $L^p$, $2\le p<\infty$. In this article, his methods are developed and employed to prove an analogue of this type of inequality for exponents $p$ `beyond the index $p=\infty$', that is, for spaces of Hölder functions and BMO.
Bibliography: 14 titles.
Keywords:
$\mathrm{BMO}$ space, Calderón-Zygmund operators, Fourier multipliers, Hölder spaces, Lipschitz space.
Received: 07.01.2014
Citation:
N. N. Osipov, “The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces”, Mat. Sb., 205:7 (2014), 95–114; Sb. Math., 205:7 (2014), 1004–1023
Linking options:
https://www.mathnet.ru/eng/sm8324https://doi.org/10.1070/SM2014v205n07ABEH004407 https://www.mathnet.ru/eng/sm/v205/i7/p95
|
Statistics & downloads: |
Abstract page: | 453 | Russian version PDF: | 119 | English version PDF: | 11 | References: | 67 | First page: | 38 |
|