Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 1, Pages 93–119
DOI: https://doi.org/10.1070/SM2015v206n01ABEH004448
(Mi sm8318)
 

This article is cited in 10 scientific papers (total in 10 papers)

On the analogues of Szegő's theorem for ergodic operators

W. Kirsсha, L. Pasturb

a FernUniversität in Hagen
b B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov
References:
Abstract: Szegő's theorem on the asymptotic behaviour of the determinants of large Toeplitz matrices is generalized to the class of ergodic operators. The generalization is formulated in terms of a triple consisting of an ergodic operator and two functions, the symbol and the test function. It is shown that in the case of the one-dimensional discrete Schrödinger operator with random ergodic or quasiperiodic potential and various choices of the symbol and the test function this generalization leads to asymptotic formulae which have no analogues in the situation of Toeplitz operators.
Bibliography: 22 titles.
Keywords: Szegő's theorem, random operators, limit theorems.
Received: 24.12.2013 and 23.07.2014
Bibliographic databases:
Document Type: Article
UDC: 517.983.28+519.214+519.216.75
MSC: Primary 47B99; Secondary 35J10, 47B80
Language: English
Original paper language: Russian
Citation: W. Kirsсh, L. Pastur, “On the analogues of Szegő's theorem for ergodic operators”, Sb. Math., 206:1 (2015), 93–119
Citation in format AMSBIB
\Bibitem{KirPas15}
\by W.~Kirsсh, L.~Pastur
\paper On the analogues of Szeg\H{o}'s theorem for ergodic operators
\jour Sb. Math.
\yr 2015
\vol 206
\issue 1
\pages 93--119
\mathnet{http://mi.mathnet.ru//eng/sm8318}
\crossref{https://doi.org/10.1070/SM2015v206n01ABEH004448}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3354964}
\zmath{https://zbmath.org/?q=an:1312.47051}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206...93K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000351527000007}
\elib{https://elibrary.ru/item.asp?id=23421600}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925277805}
Linking options:
  • https://www.mathnet.ru/eng/sm8318
  • https://doi.org/10.1070/SM2015v206n01ABEH004448
  • https://www.mathnet.ru/eng/sm/v206/i1/p103
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:546
    Russian version PDF:186
    English version PDF:16
    References:81
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024