Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 1, Pages 61–86
DOI: https://doi.org/10.1070/SM2015v206n01ABEH004446
(Mi sm8309)
 

This article is cited in 15 scientific papers (total in 15 papers)

Circular symmetrization of condensers on Riemann surfaces

V. N. Dubininab

a Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok
b Far Eastern Federal University, Vladivostok
References:
Abstract: We give a simplified definition of the new version of circular symmetrization which has previously been suggested by the author for solving extremal problems in geometric function theory. A proof of the symmetrization principle for the capacities of condensers on Riemann surfaces is presented. In addition, the class of condensers under consideration is extended and all the cases of equality in the symmetrization principle are found.
Bibliography: 22 titles.
Keywords: circular symmetrization, condenser capacity, Riemann surface, Chebyshev polynomial.
Funding agency Grant number
Russian Science Foundation 14-11-00022
This work was supported by the Russian Science Foundation under grant no. 14-11-00022.
Received: 26.11.2013
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: 30A10, 30C55, 30C85
Language: English
Original paper language: Russian
Citation: V. N. Dubinin, “Circular symmetrization of condensers on Riemann surfaces”, Sb. Math., 206:1 (2015), 61–86
Citation in format AMSBIB
\Bibitem{Dub15}
\by V.~N.~Dubinin
\paper Circular symmetrization of condensers on Riemann surfaces
\jour Sb. Math.
\yr 2015
\vol 206
\issue 1
\pages 61--86
\mathnet{http://mi.mathnet.ru//eng/sm8309}
\crossref{https://doi.org/10.1070/SM2015v206n01ABEH004446}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3354962}
\zmath{https://zbmath.org/?q=an:1321.31002}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206...61D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000351527000005}
\elib{https://elibrary.ru/item.asp?id=23421598}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925238679}
Linking options:
  • https://www.mathnet.ru/eng/sm8309
  • https://doi.org/10.1070/SM2015v206n01ABEH004446
  • https://www.mathnet.ru/eng/sm/v206/i1/p69
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:771
    Russian version PDF:219
    English version PDF:23
    References:94
    First page:87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024