Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 2, Pages 311–332
DOI: https://doi.org/10.1070/SM2015v206n02ABEH004459
(Mi sm8307)
 

This article is cited in 1 scientific paper (total in 1 paper)

Bishop-Runge approximations and inversion of a Riemann-Klein theorem

V. Michela, G. M. Henkinba

a Université Pierre & Marie Curie, Paris VI
b Central Economics and Mathematics Institute, RAS, Moscow
References:
Abstract: In this paper we give results about projective embeddings of Riemann surfaces, smooth or nodal, which we apply to the inverse Dirichlet-to-Neumann problem and to the inversion of a Riemann-Klein theorem. To produce useful embeddings, we adapt a technique of Bishop in the open bordered case and use a Runge-type harmonic approximation theorem in the compact case.
Bibliography: 36 titles.
Keywords: Riemann surface, projective embedding. Bishop approximation, Dirichlet-to-Neumann problem, Riemann-Klein theorem.
Received: 22.11.2013 and 09.07.2014
Bibliographic databases:
Document Type: Article
UDC: 517.545+517.577+517.956.27
Language: English
Original paper language: Russian
Citation: V. Michel, G. M. Henkin, “Bishop-Runge approximations and inversion of a Riemann-Klein theorem”, Sb. Math., 206:2 (2015), 311–332
Citation in format AMSBIB
\Bibitem{MicHen15}
\by V.~Michel, G.~M.~Henkin
\paper Bishop-Runge approximations and inversion of a~Riemann-Klein theorem
\jour Sb. Math.
\yr 2015
\vol 206
\issue 2
\pages 311--332
\mathnet{http://mi.mathnet.ru//eng/sm8307}
\crossref{https://doi.org/10.1070/SM2015v206n02ABEH004459}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3354975}
\zmath{https://zbmath.org/?q=an:1318.32012}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206..311H}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353302500007}
\elib{https://elibrary.ru/item.asp?id=23421612}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928162492}
Linking options:
  • https://www.mathnet.ru/eng/sm8307
  • https://doi.org/10.1070/SM2015v206n02ABEH004459
  • https://www.mathnet.ru/eng/sm/v206/i2/p149
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:498
    Russian version PDF:150
    English version PDF:33
    References:61
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024