Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 4, Pages 532–572
DOI: https://doi.org/10.1070/SM2014v205n04ABEH004387
(Mi sm8299)
 

This article is cited in 14 scientific papers (total in 14 papers)

The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)

I. K. Kozlov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In this paper we study topological properties of an integrable case for Euler's equations on the Lie algebra so(4), which can be regarded as an analogue of the classical Kovalevskaya case in rigid body dynamics. In particular, for all values of the parameters of the system under consideration, the bifurcation diagrams of the momentum mapping are constructed, the types of critical points of rank 0 are determined, the bifurcations of Liouville tori are described, and the loop molecules are computed for all singular points of the bifurcation diagrams. It follows from the obtained results that some topological properties of the classical Kovalevskaya case can be obtained from the corresponding properties of the considered integrable case on the Lie algebra so(4) by taking a natural limit.
Bibliography: 21 titles.
Keywords: integrable Hamiltonian systems, Kovalevskaya case, Liouville foliation, bifurcation diagram, topological invariants.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00664-а
12-01-31497
Ministry of Education and Science of the Russian Federation НШ-581.2014.1
11.G34.31.0054
Received: 13.11.2013
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
MSC: 37J35, 70E40
Language: English
Original paper language: Russian
Citation: I. K. Kozlov, “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sb. Math., 205:4 (2014), 532–572
Citation in format AMSBIB
\Bibitem{Koz14}
\by I.~K.~Kozlov
\paper The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)
\jour Sb. Math.
\yr 2014
\vol 205
\issue 4
\pages 532--572
\mathnet{http://mi.mathnet.ru//eng/sm8299}
\crossref{https://doi.org/10.1070/SM2014v205n04ABEH004387}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3236317}
\zmath{https://zbmath.org/?q=an:06323415}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..532K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338342100005}
\elib{https://elibrary.ru/item.asp?id=21826613}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902449086}
Linking options:
  • https://www.mathnet.ru/eng/sm8299
  • https://doi.org/10.1070/SM2014v205n04ABEH004387
  • https://www.mathnet.ru/eng/sm/v205/i4/p79
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:535
    Russian version PDF:138
    English version PDF:17
    References:80
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024