Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 2, Pages 291–306
DOI: https://doi.org/10.1070/SM2014v205n02ABEH004376
(Mi sm8274)
 

This article is cited in 22 scientific papers (total in 22 papers)

Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series

I. I. Sharapudinov

Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala
References:
Abstract: The paper deals with the space $L^{p(x)}$ consisting of classes of real measurable functions $f(x)$ on $[0,1]$ with finite integral $\displaystyle\int_0^1|f(x)|^{p(x)}\,dx$. If $1\le p(x)\le \overline p<\infty$, then the space $L^{p(x)}$ can be made into a Banach space with the norm $\displaystyle\|f\|_{p(\cdot)}=\inf\biggl\{\alpha\,{>}\,0: \int_0^1 |{f(x)/\alpha}|^{p(x)}\,dx\le\nobreak 1\biggr\}$. The inequality $\|f-Q_n(f)\|_{p(\cdot)}\le c(p)\Omega(f,1/n)_{p(\cdot)}$, which is an analogue of the first Jackson theorem, is shown to hold for the finite Fourier-Haar series $Q_n(f)$, provided that the variable exponent $p(x)$ satisfies the condition $|p(x)-p(y)|\ln(1/|x-y|)\le\nobreak c$. Here, $\Omega(f,\delta)_{p(\cdot)}$ is the modulus of continuity in $L^{p(x)}$ defined in terms of Steklov functions. If the function $f(x)$ lies in the Sobolev space $W_{p(\cdot)}^1$ with variable exponent $p(x)$, it is shown that $\|f-Q_n(f)\|_{p(\cdot)}\le c(p)/n\|f'\|_{p(\cdot)}$. Methods for estimating the deviation $|f(x)-Q_n(f,x)|$ for $f(x) \in W_{p(\cdot)}^1$ at a given point $x \in [0,1]$ are also examined. The value of $\sup_{f\in W_{p}^1(1) }|f(x)-Q_n(f,x)|$ is calculated in the case when $p(x) \equiv p = \nobreak \mathrm{const}$, where $W_{p}^1(1)=\{f\in W_{p}^1:\|f'\|_{p(\cdot)}\le1\}$.
Bibliography: 17 titles.
Keywords: variable-exponent Lebesgue and Sobolev spaces, approximation of functions by Fourier-Haar series.
Funding agency Grant number
Russian Foundation for Basic Research 10-01-00191
Received: 29.07.2013 and 30.10.2013
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: Primary 41A17; Secondary 42C10, 46E30, 46E35
Language: English
Original paper language: Russian
Citation: I. I. Sharapudinov, “Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series”, Sb. Math., 205:2 (2014), 291–306
Citation in format AMSBIB
\Bibitem{Sha14}
\by I.~I.~Sharapudinov
\paper Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series
\jour Sb. Math.
\yr 2014
\vol 205
\issue 2
\pages 291--306
\mathnet{http://mi.mathnet.ru//eng/sm8274}
\crossref{https://doi.org/10.1070/SM2014v205n02ABEH004376}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3204671}
\zmath{https://zbmath.org/?q=an:06351089}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..291S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334592600007}
\elib{https://elibrary.ru/item.asp?id=21277069}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899032412}
Linking options:
  • https://www.mathnet.ru/eng/sm8274
  • https://doi.org/10.1070/SM2014v205n02ABEH004376
  • https://www.mathnet.ru/eng/sm/v205/i2/p145
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024