|
This article is cited in 22 scientific papers (total in 22 papers)
Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series
I. I. Sharapudinov Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala
Abstract:
The paper deals with the space $L^{p(x)}$ consisting of classes of real measurable functions $f(x)$ on $[0,1]$ with finite integral $\displaystyle\int_0^1|f(x)|^{p(x)}\,dx$. If $1\le p(x)\le \overline p<\infty$, then the space $L^{p(x)}$ can be made into a Banach space with the norm $\displaystyle\|f\|_{p(\cdot)}=\inf\biggl\{\alpha\,{>}\,0: \int_0^1 |{f(x)/\alpha}|^{p(x)}\,dx\le\nobreak 1\biggr\}$. The inequality $\|f-Q_n(f)\|_{p(\cdot)}\le c(p)\Omega(f,1/n)_{p(\cdot)}$, which is an analogue of the first Jackson theorem, is shown to hold for the finite Fourier-Haar series $Q_n(f)$, provided that the variable exponent $p(x)$ satisfies the condition $|p(x)-p(y)|\ln(1/|x-y|)\le\nobreak c$. Here, $\Omega(f,\delta)_{p(\cdot)}$ is the modulus of continuity in $L^{p(x)}$
defined in terms of Steklov functions. If the function $f(x)$ lies in the Sobolev space $W_{p(\cdot)}^1$
with variable exponent $p(x)$, it is shown that $\|f-Q_n(f)\|_{p(\cdot)}\le c(p)/n\|f'\|_{p(\cdot)}$.
Methods for estimating the deviation $|f(x)-Q_n(f,x)|$ for $f(x) \in W_{p(\cdot)}^1$ at a given point $x \in [0,1]$ are also examined. The value of $\sup_{f\in W_{p}^1(1) }|f(x)-Q_n(f,x)|$ is calculated in the case
when $p(x) \equiv p = \nobreak \mathrm{const}$, where $W_{p}^1(1)=\{f\in W_{p}^1:\|f'\|_{p(\cdot)}\le1\}$.
Bibliography: 17 titles.
Keywords:
variable-exponent Lebesgue and Sobolev spaces, approximation of functions by Fourier-Haar series.
Received: 29.07.2013 and 30.10.2013
Citation:
I. I. Sharapudinov, “Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series”, Mat. Sb., 205:2 (2014), 145–160; Sb. Math., 205:2 (2014), 291–306
Linking options:
https://www.mathnet.ru/eng/sm8274https://doi.org/10.1070/SM2014v205n02ABEH004376 https://www.mathnet.ru/eng/sm/v205/i2/p145
|
Statistics & downloads: |
Abstract page: | 748 | Russian version PDF: | 182 | English version PDF: | 20 | References: | 99 | First page: | 61 |
|