Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 4, Pages 600–611
DOI: https://doi.org/10.1070/SM2014v205n04ABEH004389
(Mi sm8269)
 

This article is cited in 2 scientific papers (total in 2 papers)

The structure of locally bounded finite-dimensional representations of connected locally compact groups

A. I. Shternab

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Scientific Research Institute for System Studies of RAS, Moscow
References:
Abstract: An analogue of a Lie theorem is obtained for (not necessarily continuous) finite-dimensional representations of soluble finite-dimensional locally compact groups with connected quotient group by the centre. As a corollary, the following automatic continuity proposition is obtained for locally bounded finite-dimensional representations of connected locally compact groups: if $G$ is a connected locally compact group, $N$ is a compact normal subgroup of $G$ such that the quotient group $G/N$ is a Lie group, $N_0$ is the connected identity component in $N$, $H$ is the family of elements of $G$ commuting with every element of $N_0$, and $\pi$ is a (not necessarily continuous) locally bounded finite-dimensional representation of $G$, then $\pi$ is continuous on the commutator subgroup of $H$ (in the intrinsic topology of the smallest analytic subgroup of $G$ containing this commutator subgroup).
Bibliography: 23 titles.
Keywords: locally compact group, finite-dimensional locally compact group, Lie theorem for soluble groups, Cartan-van der Waerden phenomenon, locally bounded map.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00057-a
Received: 03.07.2013 and 24.11.2013
Bibliographic databases:
Document Type: Article
UDC: 512.546+517.986.6+512.815.1
PACS: 02.20.-a
MSC: 22D05, 22D12
Language: English
Original paper language: Russian
Citation: A. I. Shtern, “The structure of locally bounded finite-dimensional representations of connected locally compact groups”, Sb. Math., 205:4 (2014), 600–611
Citation in format AMSBIB
\Bibitem{Sht14}
\by A.~I.~Shtern
\paper The structure of locally bounded finite-dimensional representations of connected locally compact groups
\jour Sb. Math.
\yr 2014
\vol 205
\issue 4
\pages 600--611
\mathnet{http://mi.mathnet.ru//eng/sm8269}
\crossref{https://doi.org/10.1070/SM2014v205n04ABEH004389}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3236319}
\zmath{https://zbmath.org/?q=an:1294.22002}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..600S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338342100007}
\elib{https://elibrary.ru/item.asp?id=21826615}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902436545}
Linking options:
  • https://www.mathnet.ru/eng/sm8269
  • https://doi.org/10.1070/SM2014v205n04ABEH004389
  • https://www.mathnet.ru/eng/sm/v205/i4/p149
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024