Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 2, Pages 269–276
DOI: https://doi.org/10.1070/SM2014v205n02ABEH004374
(Mi sm8267)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the geometry of a smooth model of a fibre product of families of K3 surfaces

O. V. Nikol'skaya

Vladimir State University
References:
Abstract: The Hodge conjecture on algebraic cycles is proved for a smooth projective model $X$ of a fibre product $X_1\times_C X_2$ of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) $X_{k} \to C$ ($k=1,2$) over a smooth projective curve $C$ under the assumption that, for generic geometric fibres $X_{1s}$ and $ X_{2s}$, the ring $\operatorname{End}_{\operatorname{Hg}(X_{1s})}\operatorname{NS}_{\mathbb Q}(X_{1s})^{\perp}$ is an imaginary quadratic field, $\operatorname{rank}\operatorname{NS}(X_{1s})\neq 18$, and $\operatorname{End}_{\operatorname{Hg}(X_{2s})}\operatorname{NS}_{\mathbb Q}(X_{2s})^{\perp}$ is a totally real field or else $\operatorname{rank}\operatorname{NS}(X_{1s}) < \operatorname{rank}\operatorname{NS}(X_{2s})$.
Bibliography: 10 titles.
Keywords: Hodge conjecture, K3 surface.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00097
Dynasty Foundation
Received: 28.06.2013
Russian version:
Matematicheskii Sbornik, 2014, Volume 205, Number 2, Pages 123–130
DOI: https://doi.org/10.4213/sm8267
Bibliographic databases:
Document Type: Article
UDC: 512.7+512.72+512.725
MSC: 43C30
Language: English
Original paper language: Russian
Citation: O. V. Nikol'skaya, “On the geometry of a smooth model of a fibre product of families of K3 surfaces”, Mat. Sb., 205:2 (2014), 123–130; Sb. Math., 205:2 (2014), 269–276
Citation in format AMSBIB
\Bibitem{Nik14}
\by O.~V.~Nikol'skaya
\paper On the geometry of a~smooth model of a~fibre product of families of K3 surfaces
\jour Mat. Sb.
\yr 2014
\vol 205
\issue 2
\pages 123--130
\mathnet{http://mi.mathnet.ru/sm8267}
\crossref{https://doi.org/10.4213/sm8267}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3204670}
\zmath{https://zbmath.org/?q=an:1300.14010}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..269N}
\elib{https://elibrary.ru/item.asp?id=21277067}
\transl
\jour Sb. Math.
\yr 2014
\vol 205
\issue 2
\pages 269--276
\crossref{https://doi.org/10.1070/SM2014v205n02ABEH004374}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334592600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899009308}
Linking options:
  • https://www.mathnet.ru/eng/sm8267
  • https://doi.org/10.1070/SM2014v205n02ABEH004374
  • https://www.mathnet.ru/eng/sm/v205/i2/p123
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:438
    Russian version PDF:153
    English version PDF:6
    References:66
    First page:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024