Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 6, Pages 763–776
DOI: https://doi.org/10.1070/SM2014v205n06ABEH004397
(Mi sm8265)
 

This article is cited in 23 scientific papers (total in 23 papers)

On steady motion of viscoelastic fluid of Oldroyd type

E. S. Baranovskii

Voronezh State University of Engineering Technologies
References:
Abstract: We consider a mathematical model describing the steady motion of a viscoelastic medium of Oldroyd type under the Navier slip condition at the boundary. In the rheological relation, we use the objective regularized Jaumann derivative. We prove the solubility of the corresponding boundary-value problem in the weak setting. We obtain an estimate for the norm of a solution in terms of the data of the problem. We show that the solution set is sequentially weakly closed. Furthermore, we give an analytic solution of the boundary-value problem describing the flow of a viscoelastic fluid in a flat channel under a slip condition at the walls.
Bibliography: 13 titles.
Keywords: non-Newtonian fluids, viscoelastic media, Oldroyd model, Navier slip condition, flow in a channel.
Received: 20.06.2013 and 30.03.2014
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: Primary 35Q35; Secondary 35D30, 76A10
Language: English
Original paper language: Russian
Citation: E. S. Baranovskii, “On steady motion of viscoelastic fluid of Oldroyd type”, Sb. Math., 205:6 (2014), 763–776
Citation in format AMSBIB
\Bibitem{Bar14}
\by E.~S.~Baranovskii
\paper On steady motion of viscoelastic fluid of Oldroyd type
\jour Sb. Math.
\yr 2014
\vol 205
\issue 6
\pages 763--776
\mathnet{http://mi.mathnet.ru//eng/sm8265}
\crossref{https://doi.org/10.1070/SM2014v205n06ABEH004397}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3241826}
\zmath{https://zbmath.org/?q=an:06349850}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..763B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344080300001}
\elib{https://elibrary.ru/item.asp?id=21826626}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84907364886}
Linking options:
  • https://www.mathnet.ru/eng/sm8265
  • https://doi.org/10.1070/SM2014v205n06ABEH004397
  • https://www.mathnet.ru/eng/sm/v205/i6/p3
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024