|
This article is cited in 14 scientific papers (total in 14 papers)
Banach spaces that realize minimal fillings
B. B. Bednov, P. A. Borodin M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
It is proved that a real Banach space realizes minimal fillings for all its finite subsets (a shortest network spanning a fixed finite subset always exists and has the minimum possible length) if and only if it is a predual of $L_1$. The spaces $L_1$ are characterized in terms of Steiner points (medians).
Bibliography: 25 titles.
Keywords:
Banach space, shortest network, minimal filling, Steiner point (median).
Received: 19.06.2013 and 06.11.2013
Citation:
B. B. Bednov, P. A. Borodin, “Banach spaces that realize minimal fillings”, Sb. Math., 205:4 (2014), 459–475
Linking options:
https://www.mathnet.ru/eng/sm8264https://doi.org/10.1070/SM2014v205n04ABEH004383 https://www.mathnet.ru/eng/sm/v205/i4/p3
|
Statistics & downloads: |
Abstract page: | 924 | Russian version PDF: | 344 | English version PDF: | 28 | References: | 106 | First page: | 82 |
|