Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 3, Pages 432–458
DOI: https://doi.org/10.1070/SM2014v205n03ABEH004382
(Mi sm8248)
 

This article is cited in 3 scientific papers (total in 3 papers)

The Hamiltonian property of the flow of singular trajectories

L. V. Lokutsievskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Pontryagin's maximum principle reduces optimal control problems to the investigation of Hamiltonian systems of ordinary differential equations with discontinuous right-hand side. An optimal synthesis is the totality of solutions to this system with a fixed terminal (or initial) condition, which fill a region in the phase space one-to-one. In the construction of optimal synthesis, singular trajectories that go along the discontinuity surface $N$ of the right-hand side of the Hamiltonian system of ordinary differential equations, are crucial. The aim of the paper is to prove that the system of singular trajectories makes up a Hamiltonian flow on a submanifold of $N$. In particular, it is proved that the flow of singular trajectories in the problem of control of the magnetized Lagrange top in a variable magnetic field is completely Liouville integrable and can be embedded in the flow of a smooth superintegrable Hamiltonian system in the ambient space.
Bibliography: 17 titles.
Keywords: singular trajectories, singular extremals, Hamiltonian systems, integrable and superintegrable systems, Lagrange top.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00986-а
13-01-00642
Received: 28.05.2013 and 21.11.2013
Russian version:
Matematicheskii Sbornik, 2014, Volume 205, Number 3, Pages 133–160
DOI: https://doi.org/10.4213/sm8248
Bibliographic databases:
Document Type: Article
UDC: 517.97
MSC: Primary 37J05, 49K15; Secondary 70H06
Language: English
Original paper language: Russian
Citation: L. V. Lokutsievskii, “The Hamiltonian property of the flow of singular trajectories”, Mat. Sb., 205:3 (2014), 133–160; Sb. Math., 205:3 (2014), 432–458
Citation in format AMSBIB
\Bibitem{Lok14}
\by L.~V.~Lokutsievskii
\paper The Hamiltonian property of the flow of singular trajectories
\jour Mat. Sb.
\yr 2014
\vol 205
\issue 3
\pages 133--160
\mathnet{http://mi.mathnet.ru/sm8248}
\crossref{https://doi.org/10.4213/sm8248}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3222828}
\zmath{https://zbmath.org/?q=an:06323410}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..432L}
\elib{https://elibrary.ru/item.asp?id=21277075}
\transl
\jour Sb. Math.
\yr 2014
\vol 205
\issue 3
\pages 432--458
\crossref{https://doi.org/10.1070/SM2014v205n03ABEH004382}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000336736300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84901248725}
Linking options:
  • https://www.mathnet.ru/eng/sm8248
  • https://doi.org/10.1070/SM2014v205n03ABEH004382
  • https://www.mathnet.ru/eng/sm/v205/i3/p133
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:665
    Russian version PDF:208
    English version PDF:20
    References:84
    First page:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024