Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 4, Pages 488–521
DOI: https://doi.org/10.1070/SM2014v205n04ABEH004385
(Mi sm8246)
 

This article is cited in 3 scientific papers (total in 3 papers)

The $\Gamma$-convergence of oscillating integrands with nonstandard coercivity and growth conditions

V. V. Zhikova, S. E. Pastukhovab

a Vladimir State University
b Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
References:
Abstract: We study the $\Gamma$-convergence as $\varepsilon\to 0$ of a family of integral functionals with integrand $f_\varepsilon(x,u,\nabla u)$, where the integrand oscillates with respect to the space variable $x$. The integrands satisfy a two-sided power estimate on the coercivity and growth with different exponents. As a consequence, at least two different variational Dirichlet problems can be connected with the same functional. This phenomenon is called Lavrent'ev's effect. We introduce two versions of $\Gamma$-convergence corresponding to variational problems of the first and second kind. We find the $\Gamma$-limit for the aforementioned family of functionals for problems of both kinds; these may be different. We prove that the $\Gamma$-convergence of functionals goes along with the convergence of the energies and minimizers of the variational problems.
Bibliography: 23 titles.
Keywords: $\Gamma$-convergence, homogenization, Lavrent'ev's effect, $\Gamma$-realizing sequence, upper and lower regularization.
Received: 11.05.2013 and 22.11.2013
Bibliographic databases:
Document Type: Article
UDC: 517.956.8
MSC: Primary 49J45; Secondary 35B40, 49N15, 49N20
Language: English
Original paper language: Russian
Citation: V. V. Zhikov, S. E. Pastukhova, “The $\Gamma$-convergence of oscillating integrands with nonstandard coercivity and growth conditions”, Sb. Math., 205:4 (2014), 488–521
Citation in format AMSBIB
\Bibitem{ZhiPas14}
\by V.~V.~Zhikov, S.~E.~Pastukhova
\paper The $\Gamma$-convergence of oscillating integrands with nonstandard coercivity and growth conditions
\jour Sb. Math.
\yr 2014
\vol 205
\issue 4
\pages 488--521
\mathnet{http://mi.mathnet.ru//eng/sm8246}
\crossref{https://doi.org/10.1070/SM2014v205n04ABEH004385}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3236315}
\zmath{https://zbmath.org/?q=an:1293.49031}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..488Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338342100003}
\elib{https://elibrary.ru/item.asp?id=21826610}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902531898}
Linking options:
  • https://www.mathnet.ru/eng/sm8246
  • https://doi.org/10.1070/SM2014v205n04ABEH004385
  • https://www.mathnet.ru/eng/sm/v205/i4/p33
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:684
    Russian version PDF:239
    English version PDF:12
    References:102
    First page:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024