Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 2, Pages 277–290
DOI: https://doi.org/10.1070/SM2014v205n02ABEH004375
(Mi sm8226)
 

This article is cited in 2 scientific papers (total in 2 papers)

Smooth solutions of the Navier-Stokes equations

S. I. Pokhozhaev

Steklov Mathematical Institute of the Russian Academy of Sciences
References:
Abstract: We consider smooth solutions of the Cauchy problem for the Navier-Stokes equations on the scale of smooth functions which are periodic with respect to $x\in\mathbb R^3$.
We obtain existence theorems for global (with respect to $t>0$) and local solutions of the Cauchy problem. The statements of these depend on the smoothness and the norm of the initial vector function. Upper bounds for the behaviour of solutions in both classes, which depend on $t$, are also obtained.
Bibliography: 10 titles.
Keywords: Navier-Stokes equations, smooth (strong) solutions, bounds for solutions.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00348-а
11-01-12018-офи-м
Ministry of Education and Science of the Russian Federation 8215
Received: 25.02.2013 and 13.06.2013
Bibliographic databases:
Document Type: Article
UDC: 517.954
MSC: 76D05
Language: English
Original paper language: Russian
Citation: S. I. Pokhozhaev, “Smooth solutions of the Navier-Stokes equations”, Sb. Math., 205:2 (2014), 277–290
Citation in format AMSBIB
\Bibitem{Pok14}
\by S.~I.~Pokhozhaev
\paper Smooth solutions of the Navier-Stokes equations
\jour Sb. Math.
\yr 2014
\vol 205
\issue 2
\pages 277--290
\mathnet{http://mi.mathnet.ru//eng/sm8226}
\crossref{https://doi.org/10.1070/SM2014v205n02ABEH004375}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3157472}
\zmath{https://zbmath.org/?q=an:06351088}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..277P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334592600005}
\elib{https://elibrary.ru/item.asp?id=21277068}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898929267}
Linking options:
  • https://www.mathnet.ru/eng/sm8226
  • https://doi.org/10.1070/SM2014v205n02ABEH004375
  • https://www.mathnet.ru/eng/sm/v205/i2/p131
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024