Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 10, Pages 1516–1547
DOI: https://doi.org/10.1070/SM2013v204n10ABEH004347
(Mi sm8189)
 

This article is cited in 3 scientific papers (total in 3 papers)

Infinitesimal and global rigidity and inflexibility of surfaces of revolution with flattening at the poles

I. Kh. Sabitov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The subject of this article is one of the most important questions of classical geometry: the theory of bendings and infinitesimal bendings of surfaces. These questions are studied for surfaces of revolution and, unlike previous well-known works, we make only minimal smoothness assumptions (the class $C^1$) in the initial part of our study. In this class we prove local existence and uniqueness theorems for infinitesimal bendings. We then consider the analytic class and establish simple criteria for rigidity and inflexibility of compact surfaces. These criteria depend on the values of certain integer characteristics related to the order of flattening of the surface at its poles. We also show that in the nonanalytic situation there exist nonrigid surfaces with any given order of flattening at the poles.
Bibliography: 22 titles.
Keywords: pole of a surface of revolution, order of flattening, infinitesimal bending, harmonic number, rigidity.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-90415-УКРа
Received: 06.11.2012 and 22.04.2013
Bibliographic databases:
Document Type: Article
UDC: 514.772.35
MSC: 53A05
Language: English
Original paper language: Russian
Citation: I. Kh. Sabitov, “Infinitesimal and global rigidity and inflexibility of surfaces of revolution with flattening at the poles”, Sb. Math., 204:10 (2013), 1516–1547
Citation in format AMSBIB
\Bibitem{Sab13}
\by I.~Kh.~Sabitov
\paper Infinitesimal and global rigidity and inflexibility of~surfaces of revolution with flattening at the poles
\jour Sb. Math.
\yr 2013
\vol 204
\issue 10
\pages 1516--1547
\mathnet{http://mi.mathnet.ru//eng/sm8189}
\crossref{https://doi.org/10.1070/SM2013v204n10ABEH004347}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3137162}
\zmath{https://zbmath.org/?q=an:1292.53007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204.1516S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000328685000004}
\elib{https://elibrary.ru/item.asp?id=21277037}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84890451756}
Linking options:
  • https://www.mathnet.ru/eng/sm8189
  • https://doi.org/10.1070/SM2013v204n10ABEH004347
  • https://www.mathnet.ru/eng/sm/v204/i10/p127
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024