Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 12, Pages 1745–1796
DOI: https://doi.org/10.1070/SM2013v204n12ABEH004359
(Mi sm8172)
 

This article is cited in 14 scientific papers (total in 14 papers)

A basis in an invariant subspace of analytic functions

A. S. Krivosheeva, O. A. Krivosheevab

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa
b Bashkir State University, Ufa
References:
Abstract: The existence problem for a basis in a differentiation-invariant subspace of analytic functions defined in a bounded convex domain in the complex plane is investigated. Conditions are found for the solvability of a certain special interpolation problem in the space of entire functions of exponential type with conjugate diagrams lying in a fixed convex domain. These underlie sufficient conditions for the existence of a basis in the invariant subspace. This basis consists of linear combinations of eigenfunctions and associated functions of the differentiation operator, whose exponents are combined into relatively small clusters. Necessary conditions for the existence of a basis are also found. Under a natural constraint on the number of points in the groups, these coincide with the sufficient conditions. That is, a criterion is found under this constraint that a basis constructed from relatively small clusters exists in an invariant subspace of analytic functions in a bounded convex domain in the complex plane.
Bibliography: 25 titles.
Keywords: interpolation, exponential polynomial, invariant subspace, basis.
Received: 31.08.2012 and 05.04.2013
Bibliographic databases:
Document Type: Article
UDC: 517.537.7
MSC: 30D15, 46E15
Language: English
Original paper language: Russian
Citation: A. S. Krivosheev, O. A. Krivosheeva, “A basis in an invariant subspace of analytic functions”, Sb. Math., 204:12 (2013), 1745–1796
Citation in format AMSBIB
\Bibitem{KriKri13}
\by A.~S.~Krivosheev, O.~A.~Krivosheeva
\paper A basis in an invariant subspace of analytic functions
\jour Sb. Math.
\yr 2013
\vol 204
\issue 12
\pages 1745--1796
\mathnet{http://mi.mathnet.ru//eng/sm8172}
\crossref{https://doi.org/10.1070/SM2013v204n12ABEH004359}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3185085}
\zmath{https://zbmath.org/?q=an:1294.30057}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204.1745K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000331826700004}
\elib{https://elibrary.ru/item.asp?id=21277050}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894284428}
Linking options:
  • https://www.mathnet.ru/eng/sm8172
  • https://doi.org/10.1070/SM2013v204n12ABEH004359
  • https://www.mathnet.ru/eng/sm/v204/i12/p49
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024