Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 8, Pages 1122–1130
DOI: https://doi.org/10.1070/SM2013v204n08ABEH004332
(Mi sm8169)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the structure of self-affine convex bodies

A. S. Voynov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study the structure of convex bodies in $\mathbb R^d$ that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for $d = 2$ by Richter in 2011. In the present paper we disprove the conjecture for all $d \geqslant 3$ and derive a detailed description of self-affine bodies in $\mathbb R^3$. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument.
Bibliography: 10 titles.
Keywords: partition, self-affine set, convex polyhedron.
Received: 30.08.2012
Bibliographic databases:
Document Type: Article
UDC: 514.172.45+514.174.5
MSC: 52A99
Language: English
Original paper language: Russian
Citation: A. S. Voynov, “On the structure of self-affine convex bodies”, Sb. Math., 204:8 (2013), 1122–1130
Citation in format AMSBIB
\Bibitem{Voy13}
\by A.~S.~Voynov
\paper On the structure of self-affine convex bodies
\jour Sb. Math.
\yr 2013
\vol 204
\issue 8
\pages 1122--1130
\mathnet{http://mi.mathnet.ru//eng/sm8169}
\crossref{https://doi.org/10.1070/SM2013v204n08ABEH004332}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3135686}
\zmath{https://zbmath.org/?q=an:06231589}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204.1122V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325549200002}
\elib{https://elibrary.ru/item.asp?id=20359266}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888313967}
Linking options:
  • https://www.mathnet.ru/eng/sm8169
  • https://doi.org/10.1070/SM2013v204n08ABEH004332
  • https://www.mathnet.ru/eng/sm/v204/i8/p41
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:433
    Russian version PDF:190
    English version PDF:12
    References:60
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024