Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 3, Pages 419–431
DOI: https://doi.org/10.1070/SM2014v205n03ABEH004381
(Mi sm8137)
 

This article is cited in 4 scientific papers (total in 4 papers)

A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction

A. A. Illarionov

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences
References:
Abstract: Heilbronn's theorem on the average length of a finite continued fraction is generalized to the multidimensional case in terms of relative minima of the lattices which were introduced by Voronoy and Minkowski.
Bibliography: 21 titles.
Keywords: minimum of a lattice, multidimensional continued fraction, average length of a continued fraction.
Funding agency Grant number
Far Eastern Branch of the Russian Academy of Sciences 12-I-П19-01
Received: 25.04.2012 and 09.12.2013
Bibliographic databases:
Document Type: Article
UDC: 511.37+511.9
MSC: 11H06
Language: English
Original paper language: Russian
Citation: A. A. Illarionov, “A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction”, Sb. Math., 205:3 (2014), 419–431
Citation in format AMSBIB
\Bibitem{Ill14}
\by A.~A.~Illarionov
\paper A~multidimensional generalization of Heilbronn's theorem on the average length of a~finite continued fraction
\jour Sb. Math.
\yr 2014
\vol 205
\issue 3
\pages 419--431
\mathnet{http://mi.mathnet.ru//eng/sm8137}
\crossref{https://doi.org/10.1070/SM2014v205n03ABEH004381}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3222827}
\zmath{https://zbmath.org/?q=an:1298.11064}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..419I}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000336736300005}
\elib{https://elibrary.ru/item.asp?id=21277074}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84901269460}
Linking options:
  • https://www.mathnet.ru/eng/sm8137
  • https://doi.org/10.1070/SM2014v205n03ABEH004381
  • https://www.mathnet.ru/eng/sm/v205/i3/p119
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:491
    Russian version PDF:193
    English version PDF:18
    References:71
    First page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024