Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 5, Pages 641–660
DOI: https://doi.org/10.1070/SM2013v204n05ABEH004315
(Mi sm8127)
 

This article is cited in 6 scientific papers (total in 6 papers)

Existence of a Lipschitz selection of the Chebyshev-centre map

Yu. Yu. Druzhinin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The paper is concerned with the existence of a Lipschitz selection for the operator $T_C$ (the Chebyshev-centre map) that assigns to any bounded subset $M$ of a Banach space $X$ the set $T_C(M)$ of its Chebyshev centres. It is proved that if the unit sphere $S(X)$ of $X$ has an exposed smooth point, then $T_C$ does not have a Lipschitz selection. It is also proved that if $X$ is finite dimensional the operator $T_C$ has a Lipschitz selection if and only if $X$ is polyhedral. The operator $T_C$ is also shown to have a Lipschitz selection in the space $\mathbf c_0(K)$ and $\mathbf c$-spaces.
Bibliography: 4 titles.
Keywords: Chebyshev centre, Lipschitz selection, metric projection.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00952a
Received: 03.04.2012 and 26.11.2012
Bibliographic databases:
Document Type: Article
UDC: 517.982.256
MSC: 41A65
Language: English
Original paper language: Russian
Citation: Yu. Yu. Druzhinin, “Existence of a Lipschitz selection of the Chebyshev-centre map”, Sb. Math., 204:5 (2013), 641–660
Citation in format AMSBIB
\Bibitem{Dru13}
\by Yu.~Yu.~Druzhinin
\paper Existence of a~Lipschitz selection of the Chebyshev-centre map
\jour Sb. Math.
\yr 2013
\vol 204
\issue 5
\pages 641--660
\mathnet{http://mi.mathnet.ru//eng/sm8127}
\crossref{https://doi.org/10.1070/SM2013v204n05ABEH004315}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3098958}
\zmath{https://zbmath.org/?q=an:06212101}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204..641D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321826200002}
\elib{https://elibrary.ru/item.asp?id=20359249}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888341905}
Linking options:
  • https://www.mathnet.ru/eng/sm8127
  • https://doi.org/10.1070/SM2013v204n05ABEH004315
  • https://www.mathnet.ru/eng/sm/v204/i5/p25
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:461
    Russian version PDF:191
    English version PDF:11
    References:52
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024