Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 11, Pages 1549–1564
DOI: https://doi.org/10.1070/SM2013v204n11ABEH004348
(Mi sm8124)
 

This article is cited in 10 scientific papers (total in 10 papers)

Spectral analysis of difference and differential operators in weighted spaces

M. S. Bichegkuev

North-Ossetia State University, Vladikavkaz
References:
Abstract: This paper is concerned with describing the spectrum of the difference operator
$$ \mathscr{K}\colon l_\alpha^p(\mathbb Z,X)\to l_\alpha^p(\mathbb Z,X),\quad (\mathscr{K}x)(n)=Bx(n-1), \ \ n\in\mathbb{Z}, \ \ x\in l_\alpha^p(\mathbb Z,X), $$
with a constant operator coefficient $B$, which is a bounded linear operator in a Banach space $X$. It is assumed that $\mathscr{K}$ acts in the weighted space $l_\alpha^p(\mathbb Z,X)$, $1\leq p\leq \infty$, of two-sided sequences of vectors from $X$. The main results are obtained in terms of the spectrum $\sigma(B)$ of the operator coefficient $B$ and properties of the weight function.
Applications to the study of the spectrum of a differential operator with an unbounded operator coefficient (the generator of a strongly continuous semigroup of operators) in weighted function spaces are given.
Bibliography: 23 titles.
Keywords: difference operator, differential operator, spectrum of an operator, weighted spaces of sequences and functions.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00378
Received: 28.03.2012 and 26.06.2013
Russian version:
Matematicheskii Sbornik, 2013, Volume 204, Number 11, Pages 3–20
DOI: https://doi.org/10.4213/sm8124
Bibliographic databases:
Document Type: Article
UDC: 517.983.2
MSC: 47B39, 47B37
Language: English
Original paper language: Russian
Citation: M. S. Bichegkuev, “Spectral analysis of difference and differential operators in weighted spaces”, Mat. Sb., 204:11 (2013), 3–20; Sb. Math., 204:11 (2013), 1549–1564
Citation in format AMSBIB
\Bibitem{Bic13}
\by M.~S.~Bichegkuev
\paper Spectral analysis of difference and differential operators in weighted spaces
\jour Mat. Sb.
\yr 2013
\vol 204
\issue 11
\pages 3--20
\mathnet{http://mi.mathnet.ru/sm8124}
\crossref{https://doi.org/10.4213/sm8124}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3155860}
\zmath{https://zbmath.org/?q=an:1292.47024}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204.1549B}
\elib{https://elibrary.ru/item.asp?id=21277038}
\transl
\jour Sb. Math.
\yr 2013
\vol 204
\issue 11
\pages 1549--1564
\crossref{https://doi.org/10.1070/SM2013v204n11ABEH004348}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329933100001}
\elib{https://elibrary.ru/item.asp?id=21908473}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84892705968}
Linking options:
  • https://www.mathnet.ru/eng/sm8124
  • https://doi.org/10.1070/SM2013v204n11ABEH004348
  • https://www.mathnet.ru/eng/sm/v204/i11/p3
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:921
    Russian version PDF:187
    English version PDF:17
    References:76
    First page:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024