Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 3, Pages 438–462
DOI: https://doi.org/10.1070/SM2013v204n03ABEH004307
(Mi sm8103)
 

This article is cited in 3 scientific papers (total in 3 papers)

Reducing quasilinear systems to block triangular form

D. V. Tunitsky

Institute of Control Sciences, Russian Academy of Sciences, Moscow
References:
Abstract: The paper is concerned with systems of $n$ quasilinear partial differential equations of the first order with 2 independent variables. Using a geometric formalism for such equations, which goes back to Riemann, it is possible to assign a field of linear operators on an appropriate vector bundle to this type of quasilinear system. Several tests for a quasilinear system to be reducible to triangular or block triangular form are obtained in terms of this field; they supplement well known results on diagonalization and block diagonalization due to Haantjes and Bogoyavlenskij.
Bibliography: 10 titles.
Keywords: block triangular quasilinear systems, block diagonal quasilinear systems, fields of linear operators, Nijenhuis tensors, Haantjes tensors.
Received: 12.01.2012 and 04.07.2012
Bibliographic databases:
Document Type: Article
UDC: 517.956.35+514.763.8
MSC: 35F50, 76N15
Language: English
Original paper language: Russian
Citation: D. V. Tunitsky, “Reducing quasilinear systems to block triangular form”, Sb. Math., 204:3 (2013), 438–462
Citation in format AMSBIB
\Bibitem{Tun13}
\by D.~V.~Tunitsky
\paper Reducing quasilinear systems to block triangular form
\jour Sb. Math.
\yr 2013
\vol 204
\issue 3
\pages 438--462
\mathnet{http://mi.mathnet.ru//eng/sm8103}
\crossref{https://doi.org/10.1070/SM2013v204n03ABEH004307}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3088102}
\zmath{https://zbmath.org/?q=an:06190628}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204..438T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000319333200006}
\elib{https://elibrary.ru/item.asp?id=19066648}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878180452}
Linking options:
  • https://www.mathnet.ru/eng/sm8103
  • https://doi.org/10.1070/SM2013v204n03ABEH004307
  • https://www.mathnet.ru/eng/sm/v204/i3/p135
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:555
    Russian version PDF:186
    English version PDF:16
    References:68
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024