Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 4, Pages 563–587
DOI: https://doi.org/10.1070/SM2013v204n04ABEH004312
(Mi sm7931)
 

Lower bounds for sums of eigenvalues of elliptic operators and systems

A. A. Ilyinab

a M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences, Moscow
b A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
References:
Abstract: Two-term lower bounds of Berzin-Li-Yau type are obtained for the sums of eigenvalues of elliptic operators and systems with constant coefficients and Dirichlet boundary conditions. The polyharmonic operator, the Stokes system and its generalizations, the two-dimensional buckling problem, and also the Klein-Gordon operator are considered.
Bibliography: 32 titles.
Keywords: Berezin-Li-Yau inequalities, Stokes operator, polyharmonic operator, buckling problem.
Received: 27.09.2011 and 23.08.2012
Russian version:
Matematicheskii Sbornik, 2013, Volume 204, Number 4, Pages 103–126
DOI: https://doi.org/10.4213/sm7931
Bibliographic databases:
Document Type: Article
UDC: 517.984.56
MSC: 35J40, 35J58, 35P20
Language: English
Original paper language: Russian
Citation: A. A. Ilyin, “Lower bounds for sums of eigenvalues of elliptic operators and systems”, Mat. Sb., 204:4 (2013), 103–126; Sb. Math., 204:4 (2013), 563–587
Citation in format AMSBIB
\Bibitem{Ily13}
\by A.~A.~Ilyin
\paper Lower bounds for sums of eigenvalues of elliptic operators and systems
\jour Mat. Sb.
\yr 2013
\vol 204
\issue 4
\pages 103--126
\mathnet{http://mi.mathnet.ru/sm7931}
\crossref{https://doi.org/10.4213/sm7931}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3097581}
\zmath{https://zbmath.org/?q=an:06190645}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204..563I}
\elib{https://elibrary.ru/item.asp?id=19066669}
\transl
\jour Sb. Math.
\yr 2013
\vol 204
\issue 4
\pages 563--587
\crossref{https://doi.org/10.1070/SM2013v204n04ABEH004312}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320302700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888309565}
Linking options:
  • https://www.mathnet.ru/eng/sm7931
  • https://doi.org/10.1070/SM2013v204n04ABEH004312
  • https://www.mathnet.ru/eng/sm/v204/i4/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:483
    Russian version PDF:172
    English version PDF:22
    References:41
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024