Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 1, Pages 114–132
DOI: https://doi.org/10.1070/SM2013v204n01ABEH004293
(Mi sm7928)
 

This article is cited in 30 scientific papers (total in 30 papers)

The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems

I. N. Sergeev

Faculty of Mechanics and Mathematics, Moscow State University
References:
Abstract: Lyapunov-type oscillation and wandering indicators are defined for solutions of systems of differential equations; these are the average frequency of zeros for the projection of a solution onto some line and the average angular velocity of rotation of a solution about the origin in some basis, respectively. An integral equality relating these indicators is obtained. The indicators introduced are shown to coincide if, prior to averaging, the oscillation indicators are minimized over all possible lines, and the wandering indicators over all possible bases.
Bibliography: 17 titles.
Keywords: differential system, zeros of solutions, oscillation and wandering, characteristic exponents.
Received: 02.09.2011 and 06.11.2012
Bibliographic databases:
Document Type: Article
UDC: 517.926
MSC: 34C10
Language: English
Original paper language: Russian
Citation: I. N. Sergeev, “The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems”, Sb. Math., 204:1 (2013), 114–132
Citation in format AMSBIB
\Bibitem{Ser13}
\by I.~N.~Sergeev
\paper The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems
\jour Sb. Math.
\yr 2013
\vol 204
\issue 1
\pages 114--132
\mathnet{http://mi.mathnet.ru//eng/sm7928}
\crossref{https://doi.org/10.1070/SM2013v204n01ABEH004293}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3060078}
\zmath{https://zbmath.org/?q=an:06197057}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204..114S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317573800004}
\elib{https://elibrary.ru/item.asp?id=19066604}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876567674}
Linking options:
  • https://www.mathnet.ru/eng/sm7928
  • https://doi.org/10.1070/SM2013v204n01ABEH004293
  • https://www.mathnet.ru/eng/sm/v204/i1/p119
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024