Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 10, Pages 1411–1447
DOI: https://doi.org/10.1070/SM2012v203n10ABEH004270
(Mi sm7904)
 

This article is cited in 12 scientific papers (total in 12 papers)

A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials

S. B. Gashkov, I. S. Sergeev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: This work suggests a method for deriving lower bounds for the complexity of polynomials with positive real coefficients implemented by circuits of functional elements over the monotone arithmetic basis $\{x+y, \,x \cdot y\}\cup\{a \cdot x\mid a\in \mathbb R_+\}$. Using this method, several new results are obtained. In particular, we construct examples of polynomials of degree $m-1$ in each of the $n$ variables with coefficients 0 and 1 having additive monotone complexity $m^{(1-o(1))n}$ and multiplicative monotone complexity $m^{(1/2-o(1))n}$ as $m^n \to \infty$. In this form, the lower bounds derived here are sharp.
Bibliography: 72 titles.
Keywords: lower bounds for complexity, arithmetic circuits, thin sets, monotone complexity, permanent.
Received: 29.06.2011 and 11.04.2012
Russian version:
Matematicheskii Sbornik, 2012, Volume 203, Number 10, Pages 33–70
DOI: https://doi.org/10.4213/sm7904
Bibliographic databases:
Document Type: Article
UDC: 519.61+519.71
MSC: Primary 03D15; Secondary 68Q15, 68Q17
Language: English
Original paper language: Russian
Citation: S. B. Gashkov, I. S. Sergeev, “A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials”, Sb. Math., 203:10 (2012), 1411–1447
Citation in format AMSBIB
\Bibitem{GasSer12}
\by S.~B.~Gashkov, I.~S.~Sergeev
\paper A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials
\jour Sb. Math.
\yr 2012
\vol 203
\issue 10
\pages 1411--1447
\mathnet{http://mi.mathnet.ru//eng/sm7904}
\crossref{https://doi.org/10.1070/SM2012v203n10ABEH004270}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3027137}
\zmath{https://zbmath.org/?q=an:06134393}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312249700002}
\elib{https://elibrary.ru/item.asp?id=19066328}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84872310866}
Linking options:
  • https://www.mathnet.ru/eng/sm7904
  • https://doi.org/10.1070/SM2012v203n10ABEH004270
  • https://www.mathnet.ru/eng/sm/v203/i10/p33
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:685
    Russian version PDF:239
    English version PDF:15
    References:61
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024