Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 4, Pages 569–580
DOI: https://doi.org/10.1070/SM2012v203n04ABEH004235
(Mi sm7903)
 

This article is cited in 16 scientific papers (total in 16 papers)

Best recovery of the Laplace operator of a function from incomplete spectral data

G. G. Magaril-Il'yaeva, E. O. Sivkovab

a A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
b Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
References:
Abstract: This paper is concerned with the problem of best recovery for a fractional power of the Laplacian of a smooth function on $\mathbb R^d$ from an exact or approximate Fourier transform for it, which is known on some convex subset of $\mathbb R^d$. A series of optimal recovery methods is constructed. Information about the Fourier transform outside some ball centred at the origin proves redundant — it is not used by the optimal methods. These optimal methods differ in the way they ‘process’ key information.
Bibliography: 12 titles.
Keywords: Laplace operator, optimal recovery, extremal problem, Fourier transform.
Received: 22.06.2011
Bibliographic databases:
Document Type: Article
UDC: 517.518.1
MSC: 49N30, 35Q93
Language: English
Original paper language: Russian
Citation: G. G. Magaril-Il'yaev, E. O. Sivkova, “Best recovery of the Laplace operator of a function from incomplete spectral data”, Sb. Math., 203:4 (2012), 569–580
Citation in format AMSBIB
\Bibitem{MagSiv12}
\by G.~G.~Magaril-Il'yaev, E.~O.~Sivkova
\paper Best recovery of the Laplace operator of a~function from incomplete spectral data
\jour Sb. Math.
\yr 2012
\vol 203
\issue 4
\pages 569--580
\mathnet{http://mi.mathnet.ru//eng/sm7903}
\crossref{https://doi.org/10.1070/SM2012v203n04ABEH004235}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2976290}
\zmath{https://zbmath.org/?q=an:1251.49045}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203..569M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305396300006}
\elib{https://elibrary.ru/item.asp?id=19066479}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862513198}
Linking options:
  • https://www.mathnet.ru/eng/sm7903
  • https://doi.org/10.1070/SM2012v203n04ABEH004235
  • https://www.mathnet.ru/eng/sm/v203/i4/p119
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024