Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 11, Pages 1535–1552
DOI: https://doi.org/10.1070/SM2012v203n11ABEH004274
(Mi sm7897)
 

This article is cited in 1 scientific paper (total in 1 paper)

Affine spherical homogeneous spaces with good quotient by a maximal unipotent subgroup

R. S. Avdeev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: For an affine spherical homogeneous space $G/H$ of a connected semisimple algebraic group $G$, we consider the factorization morphism by the action on $G/H$ of a maximal unipotent subgroup of $G$. We prove that this morphism is equidimensional if and only if the weight semigroup of $G/H$ satisfies a simple condition.
Bibliography: 16 titles.
Keywords: algebraic group, homogeneous space, spherical subgroup, equidimensional morphism, semigroup.
Received: 11.06.2011 and 16.04.2012
Bibliographic databases:
Document Type: Article
UDC: 512.745
MSC: 14L30, 14M27, 14M17
Language: English
Original paper language: Russian
Citation: R. S. Avdeev, “Affine spherical homogeneous spaces with good quotient by a maximal unipotent subgroup”, Sb. Math., 203:11 (2012), 1535–1552
Citation in format AMSBIB
\Bibitem{Avd12}
\by R.~S.~Avdeev
\paper Affine spherical homogeneous spaces with good quotient by a~maximal unipotent subgroup
\jour Sb. Math.
\yr 2012
\vol 203
\issue 11
\pages 1535--1552
\mathnet{http://mi.mathnet.ru//eng/sm7897}
\crossref{https://doi.org/10.1070/SM2012v203n11ABEH004274}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3053223}
\zmath{https://zbmath.org/?q=an:06146408}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203.1535A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000313837500001}
\elib{https://elibrary.ru/item.asp?id=19066354}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84873123101}
Linking options:
  • https://www.mathnet.ru/eng/sm7897
  • https://doi.org/10.1070/SM2012v203n11ABEH004274
  • https://www.mathnet.ru/eng/sm/v203/i11/p3
  • Related presentations:
    This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024