Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 7, Pages 1065–1076
DOI: https://doi.org/10.1070/SM2012v203n07ABEH004254
(Mi sm7895)
 

This article is cited in 2 scientific papers (total in 2 papers)

Spectral multiplicity for powers of weakly mixing automorphisms

V. V. Ryzhikov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study the behaviour of the maximal spectral multiplicity $\mathfrak m(R^n)$ for the powers of a weakly mixing automorphism $R$. For some particular infinite sets $A$ we show that there exists a weakly mixing rank-one automorphism $R$ such that $\mathfrak m(R^n)=n$ and $\mathfrak m(R^{n+1})=1$ for all positive integers $n\in A$. Moreover, the cardinality $\operatorname{cardm}(R^n)$ of the set of spectral multiplicities for the power $R^n$ is shown to satisfy the conditions $\operatorname{cardm}(R^{n+1})=1$ and $\operatorname{cardm}(R^n)=2^{m(n)}$, $m(n)\to\infty$, $n\in A$. We also construct another weakly mixing automorphism $R$ with the following properties: all powers $R^{n}$ have homogeneous spectra and the set of limit points of the sequence $\{\mathfrak m(R^n)/n:n\in \mathbb N \}$ is infinite.
Bibliography: 17 titles.
Keywords: weakly mixing transformation, homogeneous spectrum, maximal spectral multiplicity.
Received: 03.06.2011 and 04.02.2012
Bibliographic databases:
Document Type: Article
UDC: 517.987
MSC: Primary 37A30; Secondary 47A35, 28D05
Language: English
Original paper language: Russian
Citation: V. V. Ryzhikov, “Spectral multiplicity for powers of weakly mixing automorphisms”, Sb. Math., 203:7 (2012), 1065–1076
Citation in format AMSBIB
\Bibitem{Ryz12}
\by V.~V.~Ryzhikov
\paper Spectral multiplicity for powers of weakly mixing automorphisms
\jour Sb. Math.
\yr 2012
\vol 203
\issue 7
\pages 1065--1076
\mathnet{http://mi.mathnet.ru//eng/sm7895}
\crossref{https://doi.org/10.1070/SM2012v203n07ABEH004254}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2986435}
\zmath{https://zbmath.org/?q=an:1259.37005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203.1065R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000308704900007}
\elib{https://elibrary.ru/item.asp?id=19066542}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866281941}
Linking options:
  • https://www.mathnet.ru/eng/sm7895
  • https://doi.org/10.1070/SM2012v203n07ABEH004254
  • https://www.mathnet.ru/eng/sm/v203/i7/p149
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:547
    Russian version PDF:188
    English version PDF:10
    References:72
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024