Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 7, Pages 996–1011
DOI: https://doi.org/10.1070/SM2012v203n07ABEH004251
(Mi sm7891)
 

This article is cited in 14 scientific papers (total in 14 papers)

A new version of circular symmetrization with applications to $p$-valent functions

V. N. Dubinin

Far Eastern Federal University, Vladivostok
References:
Abstract: A new version of circular symmetrization of sets, functions and condensers is proposed, which is different from classical symmetrization in the following respect: the symmetrized sets and condensers lie on the Riemann surface of the inverse function of a Chebyshev polynomial. As applications, Hayman's well-known results for nonvanishing $p$-valent holomorphic functions are supplemented as well as results for $p$-valent functions in a disc which have a zero of order $p$ at the origin.
Bibliography: 20 titles.
Keywords: circular symmetrization, capacity of a condenser, Riemann surface, $p$-valent function, Chebyshev polynomial.
Received: 19.05.2011
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: 30A10, 30C55, 30C85
Language: English
Original paper language: Russian
Citation: V. N. Dubinin, “A new version of circular symmetrization with applications to $p$-valent functions”, Sb. Math., 203:7 (2012), 996–1011
Citation in format AMSBIB
\Bibitem{Dub12}
\by V.~N.~Dubinin
\paper A new version of circular symmetrization with applications to $p$-valent functions
\jour Sb. Math.
\yr 2012
\vol 203
\issue 7
\pages 996--1011
\mathnet{http://mi.mathnet.ru//eng/sm7891}
\crossref{https://doi.org/10.1070/SM2012v203n07ABEH004251}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2986432}
\zmath{https://zbmath.org/?q=an:1264.30014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203..996D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000308704900004}
\elib{https://elibrary.ru/item.asp?id=19066531}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866274242}
Linking options:
  • https://www.mathnet.ru/eng/sm7891
  • https://doi.org/10.1070/SM2012v203n07ABEH004251
  • https://www.mathnet.ru/eng/sm/v203/i7/p79
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:703
    Russian version PDF:197
    English version PDF:20
    References:74
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024