Typesetting math: 100%
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 10, Pages 1490–1517
DOI: https://doi.org/10.1070/SM2012v203n10ABEH004272
(Mi sm7887)
 

This article is cited in 6 scientific papers (total in 6 papers)

Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere

Yu. Yu. Klevtsova

Siberian Regional Hydrometeorological Research Institute
References:
Abstract: The paper is concerned with the Cauchy problem for a nonlinear system of partial differential equations with parameters. This system describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The right-hand side of the system is perturbed by white noise, and random initial data is considered. This system is shown to be uniquely solvable, and an estimate for the continuous dependence of the solution on the set of random initial data and the right-hand side is established on a finite time interval. In passing, an estimate for the continuous dependence on the set of parameters, the initial data, and the right-hand side is obtained on a finite time interval for the solution of the Cauchy problem with deterministic initial data and deterministic right-hand side.
Bibliography: 32 titles.
Keywords: two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere, white noise perturbation, well-posed Cauchy problem, random initial data.
Received: 13.05.2011 and 26.04.2012
Bibliographic databases:
Document Type: Article
UDC: 517.955.2
MSC: Primary 35G55; Secondary 35Q86
Language: English
Original paper language: Russian
Citation: Yu. Yu. Klevtsova, “Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere”, Sb. Math., 203:10 (2012), 1490–1517
Citation in format AMSBIB
\Bibitem{Kle12}
\by Yu.~Yu.~Klevtsova
\paper Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a~baroclinic atmosphere
\jour Sb. Math.
\yr 2012
\vol 203
\issue 10
\pages 1490--1517
\mathnet{http://mi.mathnet.ru/eng/sm7887}
\crossref{https://doi.org/10.1070/SM2012v203n10ABEH004272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3027139}
\zmath{https://zbmath.org/?q=an:06134395}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312249700004}
\elib{https://elibrary.ru/item.asp?id=19066342}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84872283957}
Linking options:
  • https://www.mathnet.ru/eng/sm7887
  • https://doi.org/10.1070/SM2012v203n10ABEH004272
  • https://www.mathnet.ru/eng/sm/v203/i10/p117
  • This publication is cited in the following 6 articles:
    1. Yu. Yu. Klevtsova, “Ob integralnykh svoistvakh statsionarnykh mer dlya stokhasticheskoi sistemy modeli Lorentsa baroklinnoi atmosfery”, Sib. elektron. matem. izv., 19:2 (2022), 984–1014  mathnet  crossref  mathscinet
    2. Yu. Yu. Klevtsova, “On the inviscid limit of stationary measures for the stochastic system of the Lorenz model for a baroclinic atmosphere”, Sib. elektron. matem. izv., 19:2 (2022), 1015–1037  mathnet  crossref  mathscinet
    3. Krupchatnikov V.N., Platov G.A., Golubeva E.N., Fomenko A.A., Klevtsova Yu.Yu., Lykosov V.N., “Some Results of Studies in the Area of Numerical Weather Prediction and Climate Theory in Siberia”, Russ. Meteorol. Hydrol., 43:11 (2018), 713–721  crossref  isi  scopus
    4. Yu. Yu. Klevtsova, “On the rate of convergence as t+ of the distributions of solutions to the stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 208:7 (2017), 929–976  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. Yu. Yu. Klevtsova, “The uniqueness of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 206:3 (2015), 421–469  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Yu. Yu. Klevtsova, “On the existence of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 204:9 (2013), 1307–1331  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:858
    Russian version PDF:221
    English version PDF:34
    References:101
    First page:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025