Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 12, Pages 1837–1864
DOI: https://doi.org/10.1070/SM2003v194n12ABEH000788
(Mi sm788)
 

This article is cited in 15 scientific papers (total in 15 papers)

Multiplication modules over non-commutative rings

A. A. Tuganbaev

Moscow Power Engineering Institute (Technical University)
References:
Abstract: It is proved that each submodule of a multiplication module over a regular ring is a multiplicative module. If AA is a ring with commutative multiplication of right ideals, then each projective right ideal is a multiplicative module, and a finitely generated A-module M is a multiplicative module if and only if all its localizations with respect to maximal right ideals of A are cyclic modules over the corresponding localizations of A. In addition, several known results on multiplication modules over commutative rings are extended to modules over not necessarily commutative rings.
Received: 13.08.2002
Bibliographic databases:
UDC: 512.55
MSC: 16Dxx
Language: English
Original paper language: Russian
Citation: A. A. Tuganbaev, “Multiplication modules over non-commutative rings”, Sb. Math., 194:12 (2003), 1837–1864
Citation in format AMSBIB
\Bibitem{Tug03}
\by A.~A.~Tuganbaev
\paper Multiplication modules over non-commutative rings
\jour Sb. Math.
\yr 2003
\vol 194
\issue 12
\pages 1837--1864
\mathnet{http://mi.mathnet.ru/eng/sm788}
\crossref{https://doi.org/10.1070/SM2003v194n12ABEH000788}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2052697}
\zmath{https://zbmath.org/?q=an:1068.16006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220189500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1642278406}
Linking options:
  • https://www.mathnet.ru/eng/sm788
  • https://doi.org/10.1070/SM2003v194n12ABEH000788
  • https://www.mathnet.ru/eng/sm/v194/i12/p93
  • This publication is cited in the following 15 articles:
    1. Song-chol HAN, Won-jin HAN, Won-sok PAE, “Properties of the subtractive prime spectrum of a semimodule”, Hacettepe Journal of Mathematics and Statistics, 52:3 (2023), 546  crossref
    2. Le Van THUYET, Truong Cong QUYNH, “On Automorphism-invariant multiplication modules over a noncommutative ring”, IEJA, 2023, 1  crossref
    3. Han S.-Ch., Pae W.-S., Ho J.-N., “Topological Properties of the Prime Spectrum of a Semimodule”, J. Algebra, 566 (2021), 205–221  crossref  mathscinet  isi  scopus
    4. Groenewald N.J., “On Weakly Prime and Weakly 2-Absorbing Modules Over Non-Commutative Rings”, Kyungpook Math. J., 61:1 (2021), 33–48  crossref  mathscinet  isi
    5. Alsuraiheed T., Bavula V.V., “Criteria For a Direct Sum of Modules to Be a Multiplication Module Over Noncommutative Rings”, J. Algebra, 584 (2021), 69–88  crossref  mathscinet  isi
    6. Medina-Barcenas M., Morales-Callejas L., Shaid Sandoval-Miranda M.L., Zaldivar-Corichi A., “On Strongly Harmonic and Gelfand Modules”, Commun. Algebr., 48:5 (2020), 1985–2013  crossref  mathscinet  isi
    7. Beiranvand P.K., Beyranvand R., “Almost Prime and Weakly Prime Submodules”, J. Algebra. Appl., 18:7 (2019), 1950129  crossref  mathscinet  zmath  isi
    8. Groenewald N.J., Ssevviiri D., “Classical Completely Prime Submodules”, Hacet. J. Math. Stat., 45:3 (2016), 717–729  crossref  mathscinet  zmath  isi  scopus
    9. Castro Perez J., Medina Barcenas M., Rios Montes J., Zaldivar Corichi A., “On Semiprime Goldie Modules”, Commun. Algebr., 44:11 (2016), 4749–4768  crossref  mathscinet  zmath  isi  scopus
    10. Jawad Abuhlail, “Zariski Topologies for Coprime and Second Submodules”, Algebra Colloq, 22:01 (2015), 47  crossref  mathscinet  zmath  scopus  scopus
    11. Wijayanti I.E., “on Left Residuals of Submodules in Fully Multiplication Modules”, JP J. Algebr. Number Theory Appl., 36:1 (2015), 17–28  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    12. Jawad Abuhlail, “A Zariski Topology for Modules”, Communications in Algebra, 39:11 (2011), 4163  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    13. Jawad Abuhlail, “A dual Zariski topology for modules”, Topology and its Applications, 158:3 (2011), 457  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    14. Zhang Guoyin, Tong Wenting, Wang Fanggui, “Spectrum of a noncommutative ring”, Comm. Algebra, 34:8 (2006), 2795–2810  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    15. A. A. Tuganbaev, “Multiplication modules and ideals”, J Math Sci, 136:4 (2006), 4116  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:747
    Russian version PDF:287
    English version PDF:23
    References:66
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025