Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 6, Pages 910–935
DOI: https://doi.org/10.1070/SM2013v204n06ABEH004324
(Mi sm7875)
 

This article is cited in 5 scientific papers (total in 5 papers)

Littlewood polynomials and applications of them in the spectral theory of dynamical systems

A. A. Prikhod'ko

M. V. Lomonosov Moscow State University
References:
Abstract: In this paper we establish the existence of character sums on the real line $\mathbb R$ that are $\varepsilon$-flat on any given compact subset $K\subset \mathbb R \setminus \{0\}$ with respect to the metric in the space $L^1(K)$. A consequence of this analytic result is an affirmative answer to Banach's conjecture on the existence of a dynamical system with a simple Lebesgue spectrum in the class of actions of the group $\mathbb R$.
Bibliography: 25 titles.
Keywords: Littlewood polynomials, van der Corput's method, Riesz products, rank-one flows, Banach's problem.
Received: 07.04.2011 and 01.04.2013
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: Primary 11L40, 37A10; Secondary 26D05, 28D05, 42A05
Language: English
Original paper language: Russian
Citation: A. A. Prikhod'ko, “Littlewood polynomials and applications of them in the spectral theory of dynamical systems”, Sb. Math., 204:6 (2013), 910–935
Citation in format AMSBIB
\Bibitem{Pri13}
\by A.~A.~Prikhod'ko
\paper Littlewood polynomials and applications of them in the spectral theory of dynamical systems
\jour Sb. Math.
\yr 2013
\vol 204
\issue 6
\pages 910--935
\mathnet{http://mi.mathnet.ru//eng/sm7875}
\crossref{https://doi.org/10.1070/SM2013v204n06ABEH004324}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3113456}
\zmath{https://zbmath.org/?q=an:06212110}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204..910P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323305600005}
\elib{https://elibrary.ru/item.asp?id=20359258}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84882998530}
Linking options:
  • https://www.mathnet.ru/eng/sm7875
  • https://doi.org/10.1070/SM2013v204n06ABEH004324
  • https://www.mathnet.ru/eng/sm/v204/i6/p135
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024