Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 8, Pages 1112–1150
DOI: https://doi.org/10.1070/SM2012v203n08ABEH004257
(Mi sm7870)
 

This article is cited in 20 scientific papers (total in 20 papers)

A generalization of Bertrand's theorem to surfaces of revolution

O. A. Zagryadskii, E. A. Kudryavtseva, D. A. Fedoseev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We prove a generalization of Bertrand's theorem to the case of abstract surfaces of revolution that have no ‘equators’. We prove a criterion for exactly two central potentials to exist on this type of surface (up to an additive and a multiplicative constant) for which all bounded orbits are closed and there is a bounded nonsingular noncircular orbit. We prove a criterion for the existence of exactly one such potential. We study the geometry and classification of the corresponding surfaces with the aforementioned pair of potentials (gravitational and oscillatory) or unique potential (oscillatory). We show that potentials of the required form do not exist on surfaces that do not belong to any of the classes described.
Bibliography: 33 titles.
Keywords: Bertrand's theorem, inverse problem of dynamics, surface of revolution, motion in a central field, closed orbits.
Received: 29.03.2011 and 31.03.2012
Bibliographic databases:
Document Type: Article
UDC: 514.853
MSC: Primary 70F17; Secondary 53A20, 53A35, 70B05, 70H06, 70H12, 70H33
Language: English
Original paper language: Russian
Citation: O. A. Zagryadskii, E. A. Kudryavtseva, D. A. Fedoseev, “A generalization of Bertrand's theorem to surfaces of revolution”, Sb. Math., 203:8 (2012), 1112–1150
Citation in format AMSBIB
\Bibitem{ZagKudFed12}
\by O.~A.~Zagryadskii, E.~A.~Kudryavtseva, D.~A.~Fedoseev
\paper A generalization of Bertrand's theorem to surfaces of revolution
\jour Sb. Math.
\yr 2012
\vol 203
\issue 8
\pages 1112--1150
\mathnet{http://mi.mathnet.ru/eng/sm7870}
\crossref{https://doi.org/10.1070/SM2012v203n08ABEH004257}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3024812}
\zmath{https://zbmath.org/?q=an:06110267}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309818600003}
\elib{https://elibrary.ru/item.asp?id=19066553}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868621826}
Linking options:
  • https://www.mathnet.ru/eng/sm7870
  • https://doi.org/10.1070/SM2012v203n08ABEH004257
  • https://www.mathnet.ru/eng/sm/v203/i8/p39
  • This publication is cited in the following 20 articles:
    1. M. K. Altuev, V. A. Kibkalo, “Topological analysis of pseudo-Euclidean Euler top for special values of the parameters”, Sb. Math., 214:3 (2023), 334–348  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Rami Ahmad El-Nabulsi, Waranont Anukool, “Orbital Dynamics, Chaotic Orbits and Jacobi Elliptic Functions”, J Astronaut Sci, 70:1 (2023)  crossref
    3. Alain Albouy, Lei Zhao, “Darboux Inversions of the Kepler Problem”, Regul. Chaotic Dyn., 27:3 (2022), 253–280  mathnet  crossref  mathscinet
    4. Martynchuk N. Dullin H.R. Efstathiou K. Waalkens H., “Scattering Invariants in Euler'S Two-Center Problem”, Nonlinearity, 32:4 (2019), 1296–1326  crossref  mathscinet  zmath  isi  scopus
    5. Ortega R., Rojas D., “A Proof of Bertrand'S Theorem Using the Theory of Isochronous Potentials”, J. Dyn. Differ. Equ., 31:4 (2019), 2017–2028  crossref  mathscinet  zmath  isi
    6. E. A. Kudryavtseva, S. A. Podlipaev, “Superintegrable Bertrand magnetic geodesic flows”, J. Math. Sci., 259:5 (2021), 689–698  mathnet  crossref
    7. E. A. Kudryavtseva, D. A. Fedoseev, “Superintegrable Bertrand Natural Mechanical Systems”, J. Math. Sci. (N. Y.), 248:4 (2020), 409–429  mathnet  crossref  mathscinet
    8. Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “The Spatial Problem of 2 Bodies on a Sphere. Reduction and Stochasticity”, Regul. Chaotic Dyn., 21:5 (2016), 556–580  mathnet  crossref  mathscinet  zmath  elib
    9. E. A. Kudryavtseva, D. A. Fedoseev, “The Bertrand's manifolds with equators”, Moscow University Mathematics Bulletin, 71:1 (2016), 23–26  mathnet  crossref  mathscinet  isi
    10. D. A. Fedoseev, A. T. Fomenko, “Noncompact bifurcations of integrable dynamic systems”, J. Math. Sci., 248:6 (2020), 810–827  mathnet  crossref
    11. E. A. Kudryavtseva, D. A. Fedoseev, “Mechanical systems with closed orbits on manifolds of revolution”, Sb. Math., 206:5 (2015), 718–737  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. I. V. Sypchenko, D. S. Timonina, “Closed geodesics on piecewise smooth surfaces of revolution with constant curvature”, Sb. Math., 206:5 (2015), 738–769  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. D. A. Fedoseev, “Bifurcation diagrams of natural Hamiltonian systems on Bertrand manifolds”, Moscow University Mathematics Bulletin, 70:1 (2015), 44–47  mathnet  crossref  mathscinet  isi
    14. O. A. Zagryadskii, “Bertrand surfaces with a pseudo-Riemannian metric of revolution”, Moscow University Mathematics Bulletin, 70:1 (2015), 49–52  mathnet  crossref  mathscinet  isi
    15. O. A. Zagryadskii, D. A. Fedoseev, “The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution”, Moscow University Mathematics Bulletin, 70:3 (2015), 119–124  mathnet  crossref  mathscinet  isi
    16. Richard Montgomery, Corey Shanbrom, Fields Institute Communications, 73, Geometry, Mechanics, and Dynamics, 2015, 319  crossref
    17. A. T. Fomenko, A. Yu. Konyaev, “Geometry, dynamics and different types of orbits”, J. Fixed Point Theory Appl., 15:1 (2014), 49–66  crossref  mathscinet  zmath  isi  elib  scopus
    18. O. A. Zagryadskii, “The relations between the Bertrand, Bonnet, and Tannery classes”, Moscow University Mathematics Bulletin, 69:6 (2014), 277–279  mathnet  crossref  mathscinet
    19. Anatoly T. Fomenko, Andrei Konyaev, Solid Mechanics and Its Applications, 211, Continuous and Distributed Systems, 2014, 3  crossref
    20. O. A. Zagryadskii, D. A. Fedoseev, “The explicit form of the Bertrand metric”, Moscow University Mathematics Bulletin, 68:5 (2013), 258–262  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:858
    Russian version PDF:421
    English version PDF:104
    References:88
    First page:34
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025