Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 8, Pages 1112–1150
DOI: https://doi.org/10.1070/SM2012v203n08ABEH004257
(Mi sm7870)
 

This article is cited in 20 scientific papers (total in 20 papers)

A generalization of Bertrand's theorem to surfaces of revolution

O. A. Zagryadskii, E. A. Kudryavtseva, D. A. Fedoseev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We prove a generalization of Bertrand's theorem to the case of abstract surfaces of revolution that have no ‘equators’. We prove a criterion for exactly two central potentials to exist on this type of surface (up to an additive and a multiplicative constant) for which all bounded orbits are closed and there is a bounded nonsingular noncircular orbit. We prove a criterion for the existence of exactly one such potential. We study the geometry and classification of the corresponding surfaces with the aforementioned pair of potentials (gravitational and oscillatory) or unique potential (oscillatory). We show that potentials of the required form do not exist on surfaces that do not belong to any of the classes described.
Bibliography: 33 titles.
Keywords: Bertrand's theorem, inverse problem of dynamics, surface of revolution, motion in a central field, closed orbits.
Received: 29.03.2011 and 31.03.2012
Russian version:
Matematicheskii Sbornik, 2012, Volume 203, Number 8, Pages 39–78
DOI: https://doi.org/10.4213/sm7870
Bibliographic databases:
Document Type: Article
UDC: 514.853
MSC: Primary 70F17; Secondary 53A20, 53A35, 70B05, 70H06, 70H12, 70H33
Language: English
Original paper language: Russian
Citation: O. A. Zagryadskii, E. A. Kudryavtseva, D. A. Fedoseev, “A generalization of Bertrand's theorem to surfaces of revolution”, Mat. Sb., 203:8 (2012), 39–78; Sb. Math., 203:8 (2012), 1112–1150
Citation in format AMSBIB
\Bibitem{ZagKudFed12}
\by O.~A.~Zagryadskii, E.~A.~Kudryavtseva, D.~A.~Fedoseev
\paper A generalization of Bertrand's theorem to surfaces of revolution
\jour Mat. Sb.
\yr 2012
\vol 203
\issue 8
\pages 39--78
\mathnet{http://mi.mathnet.ru/sm7870}
\crossref{https://doi.org/10.4213/sm7870}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3024812}
\zmath{https://zbmath.org/?q=an:06110267}
\elib{https://elibrary.ru/item.asp?id=19066553}
\transl
\jour Sb. Math.
\yr 2012
\vol 203
\issue 8
\pages 1112--1150
\crossref{https://doi.org/10.1070/SM2012v203n08ABEH004257}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309818600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868621826}
Linking options:
  • https://www.mathnet.ru/eng/sm7870
  • https://doi.org/10.1070/SM2012v203n08ABEH004257
  • https://www.mathnet.ru/eng/sm/v203/i8/p39
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:777
    Russian version PDF:362
    English version PDF:34
    References:68
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024