Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 8, Pages 1169–1195
DOI: https://doi.org/10.1070/SM2012v203n08ABEH004259
(Mi sm7862)
 

This article is cited in 15 scientific papers (total in 15 papers)

Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions

T. A. Mel'nik, A. V. Popov

National Taras Shevchenko University of Kyiv
References:
Abstract: Boundary value and spectral problems for an elliptic differential equation with rapidly oscillating coefficients in a thin perforated region with rapidly changing thickness are investigated. Descriptions of asymptotic algorithms for solutions of such problems in thin regions with different limiting dimensions are combined. For a mixed inhomogeneous boundary value problem a corrector is constructed and an asymptotic estimate in the corresponding Sobolev space is established. Asymptotic bounds for eigenvalues and eigenfunctions of the Neumann spectral problems are also found. Full asymptotic expansions for the eigenvalues and eigenfunctions are constructed under certain symmetry assumptions about the structure of the thin perforated region and the coefficients of the equations.
Bibliography: 21 titles.
Keywords: asymptotic approximations and expansions, thin perforated regions, elliptic boundary value and spectral problems.
Received: 18.03.2011 and 27.12.2011
Bibliographic databases:
Document Type: Article
UDC: 517.956.225+517.956.8
MSC: 35B27, 35J57, 35P20
Language: English
Original paper language: Russian
Citation: T. A. Mel'nik, A. V. Popov, “Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions”, Sb. Math., 203:8 (2012), 1169–1195
Citation in format AMSBIB
\Bibitem{MelPop12}
\by T.~A.~Mel'nik, A.~V.~Popov
\paper Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions
\jour Sb. Math.
\yr 2012
\vol 203
\issue 8
\pages 1169--1195
\mathnet{http://mi.mathnet.ru//eng/sm7862}
\crossref{https://doi.org/10.1070/SM2012v203n08ABEH004259}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3024814}
\zmath{https://zbmath.org/?q=an:1259.35025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309818600005}
\elib{https://elibrary.ru/item.asp?id=19066572}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868629214}
Linking options:
  • https://www.mathnet.ru/eng/sm7862
  • https://doi.org/10.1070/SM2012v203n08ABEH004259
  • https://www.mathnet.ru/eng/sm/v203/i8/p97
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024