Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 12, Pages 1747–1774
DOI: https://doi.org/10.1070/SM2003v194n12ABEH000785
(Mi sm785)
 

This article is cited in 11 scientific papers (total in 11 papers)

On ramification theory in the imperfect residue field case

I. B. Zhukov

Saint-Petersburg State University
References:
Abstract: This paper is devoted to the ramification theory of complete discrete valuation fields such that the residue field has prime characteristic $p$ and the cardinality of a $p$-base is 1. This class contains two-dimensional local and local-global fields. A new definition of ramification filtration for such fields is given. It turns out that Hasse–Herbrand type functions can be defined with all the usual properties. Thanks to this, a theory of upper ramification groups and the ramification theory of infinite extensions can be developed.
The case of two-dimensional local fields of equal characteristic is studied in detail. A filtration on the second $K$-group of the field in question is introduced that is different from the one induced by the standard filtration on the multiplicative group. The reciprocity map of two-dimensional local class field theory is proved to identify this filtration with the ramification filtration.
Received: 25.05.2003
Russian version:
Matematicheskii Sbornik, 2003, Volume 194, Number 12, Pages 3–30
DOI: https://doi.org/10.4213/sm785
Bibliographic databases:
UDC: 512.62
MSC: Primary 12F05; Secondary 11S15, 19F05
Language: English
Original paper language: Russian
Citation: I. B. Zhukov, “On ramification theory in the imperfect residue field case”, Mat. Sb., 194:12 (2003), 3–30; Sb. Math., 194:12 (2003), 1747–1774
Citation in format AMSBIB
\Bibitem{Zhu03}
\by I.~B.~Zhukov
\paper On ramification theory in the~imperfect residue field case
\jour Mat. Sb.
\yr 2003
\vol 194
\issue 12
\pages 3--30
\mathnet{http://mi.mathnet.ru/sm785}
\crossref{https://doi.org/10.4213/sm785}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2052694}
\zmath{https://zbmath.org/?q=an:1063.11046}
\transl
\jour Sb. Math.
\yr 2003
\vol 194
\issue 12
\pages 1747--1774
\crossref{https://doi.org/10.1070/SM2003v194n12ABEH000785}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220189500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1642283245}
Linking options:
  • https://www.mathnet.ru/eng/sm785
  • https://doi.org/10.1070/SM2003v194n12ABEH000785
  • https://www.mathnet.ru/eng/sm/v194/i12/p3
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:547
    Russian version PDF:192
    English version PDF:10
    References:52
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024