|
This article is cited in 7 scientific papers (total in 7 papers)
On the geometric properties of Cesàro spaces
S. V. Astashkin Samara State University
Abstract:
It is proved that the Cesàro space $\operatorname{Ces}_{p}[0,1]$, $1\le p<\infty$, contains a complemented subspace isomorphic to $l^q$ if and only if either $q=1$ or $q=p$. A class of subspaces of this space that contain complemented copies of the space $l^p$ is distinguished.
Bibliography: 16 titles.
Keywords:
Banach lattices, Cesàro spaces, complemented subspaces, copies of $l^q$-spaces, sublinear operators.
Received: 19.12.2010 and 25.06.2011
Citation:
S. V. Astashkin, “On the geometric properties of Cesàro spaces”, Sb. Math., 203:4 (2012), 514–533
Linking options:
https://www.mathnet.ru/eng/sm7834https://doi.org/10.1070/SM2012v203n04ABEH004232 https://www.mathnet.ru/eng/sm/v203/i4/p61
|
|