Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 3, Pages 307–325
DOI: https://doi.org/10.1070/SM2012v203n03ABEH004224
(Mi sm7812)
 

This article is cited in 6 scientific papers (total in 6 papers)

The spectral properties of distributions and asymptotic methods in perturbation theory

V. S. Belonosovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University
References:
Abstract: For differential equations of the form $x'=\varepsilon f(t,x;\varepsilon)$ in a Banach space a modification of the classical Krylov-Bogolyubov method is put forward. It allows complications in the construction of higher-order approximations which stem from the ‘small denominators problem’ to be avoided and many of the standard constraints on the behaviour of the function $f$ to be eliminated. The approach suggested is based on some results on the Fourier transforms of distributions.
Bibliography: 17 titles.
Keywords: method of averaging, spectrum, distributions, Fourier transform.
Received: 01.11.2010
Bibliographic databases:
Document Type: Article
UDC: 517.928
MSC: Primary 34C29; Secondary 46F05
Language: English
Original paper language: Russian
Citation: V. S. Belonosov, “The spectral properties of distributions and asymptotic methods in perturbation theory”, Sb. Math., 203:3 (2012), 307–325
Citation in format AMSBIB
\Bibitem{Bel12}
\by V.~S.~Belonosov
\paper The spectral properties of distributions and asymptotic methods in perturbation theory
\jour Sb. Math.
\yr 2012
\vol 203
\issue 3
\pages 307--325
\mathnet{http://mi.mathnet.ru//eng/sm7812}
\crossref{https://doi.org/10.1070/SM2012v203n03ABEH004224}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2961490}
\zmath{https://zbmath.org/?q=an:1250.34048}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203..307B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000304048700001}
\elib{https://elibrary.ru/item.asp?id=19066439}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862081021}
Linking options:
  • https://www.mathnet.ru/eng/sm7812
  • https://doi.org/10.1070/SM2012v203n03ABEH004224
  • https://www.mathnet.ru/eng/sm/v203/i3/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:2139
    Russian version PDF:426
    English version PDF:16
    References:145
    First page:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024