Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 11, Pages 1661–1666
DOI: https://doi.org/10.1070/SM2011v202n11ABEH004203
(Mi sm7811)
 

This article is cited in 12 scientific papers (total in 12 papers)

Powers of sets in free groups

S. R. Safin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We prove that |An|cn|A|[(n+1)/2] for any finite subset A of a free group if A contains at least two noncommuting elements, where the cn>0 are constants not depending on A. Simple examples show that the order of these estimates is best possible for each n>0.
Bibliography: 5 titles.
Keywords: free group, relations in a free group, subsets of a free group.
Received: 31.10.2010
Bibliographic databases:
Document Type: Article
UDC: 512.544
MSC: 20E05
Language: English
Original paper language: Russian
Citation: S. R. Safin, “Powers of sets in free groups”, Sb. Math., 202:11 (2011), 1661–1666
Citation in format AMSBIB
\Bibitem{Saf11}
\by S.~R.~Safin
\paper Powers of sets in free groups
\jour Sb. Math.
\yr 2011
\vol 202
\issue 11
\pages 1661--1666
\mathnet{http://mi.mathnet.ru/eng/sm7811}
\crossref{https://doi.org/10.1070/SM2011v202n11ABEH004203}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2907200}
\zmath{https://zbmath.org/?q=an:1248.20027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202.1661S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000299322800005}
\elib{https://elibrary.ru/item.asp?id=19066250}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856060987}
Linking options:
  • https://www.mathnet.ru/eng/sm7811
  • https://doi.org/10.1070/SM2011v202n11ABEH004203
  • https://www.mathnet.ru/eng/sm/v202/i11/p97
  • This publication is cited in the following 12 articles:
    1. Renxing Wan, Wenyuan Yang, “Uniform exponential growth for groups with proper product actions on hyperbolic spaces”, Journal of Algebra, 676 (2025), 189  crossref
    2. Coulon R., Steenbock M., “Product Set Growth in Burnside Groups”, J. Ecole Polytech.-Math., 9 (2022), 463–504  crossref  mathscinet  isi
    3. V. S. Atabekyan, H. T. Aslanyan, S. T. Aslanyan, “Powers of subsets in free periodic groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 56:2 (2022), 43–48  mathnet  crossref
    4. V. S. Atabekyan, V. G. Mikaelyan, “On the Product of Subsets in Periodic Groups”, J. Contemp. Mathemat. Anal., 57:6 (2022), 395  crossref
    5. Yu-Miao Cui, Yue-Ping Jiang, Wen-Yuan Yang, “Lower bound on growth of non-elementary subgroups in relatively hyperbolic groups”, Journal of Group Theory, 2022  crossref
    6. V. S. Atabekyan, V. G. Mikaelyan, “O proizvedenii podmnozhestv v pereodicheskikh gruppakh”, Proceedings of NAS RA. Mathematics, 2022, 12  crossref
    7. Delzant T., Steenbock M., “Product Set Growth in Groups and Hyperbolic Geometry”, J. Topol., 13:3 (2020), 1183–1215  crossref  mathscinet  isi
    8. Tointon M., “Introduction to Approximate Groups”, Introduction to Approximate Groups, London Mathematical Society Student Texts, 94, Cambridge Univ Press, 2020, 1–205  crossref  mathscinet  isi
    9. Emmanuel Breuillard, The IMA Volumes in Mathematics and its Applications, 159, Recent Trends in Combinatorics, 2016, 369  crossref
    10. J. O. Button, “Growth in infinite groups of infinite subsets”, Algebra Colloq., 22:2 (2015), 333–348  crossref  mathscinet  zmath  isi  elib  scopus
    11. J. O. Button, “Explicit Helfgott type growth in free products and in limit groups”, J. Algebra, 389 (2013), 61–77  crossref  mathscinet  zmath  isi  elib  scopus
    12. Emmanuel Breuillard, Ben Green, Terence Tao, Bolyai Society Mathematical Studies, 25, Erdős Centennial, 2013, 129  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:507
    Russian version PDF:202
    English version PDF:25
    References:56
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025