Abstract:
We prove that |An|⩾cn⋅|A|[(n+1)/2] for any finite subset A of a free group if A contains at least two noncommuting elements, where the cn>0 are constants not depending on A. Simple examples
show that the order of these estimates is best possible for each n>0.
Bibliography: 5 titles.
Keywords:
free group, relations in a free group, subsets of a free group.
\Bibitem{Saf11}
\by S.~R.~Safin
\paper Powers of sets in free groups
\jour Sb. Math.
\yr 2011
\vol 202
\issue 11
\pages 1661--1666
\mathnet{http://mi.mathnet.ru/eng/sm7811}
\crossref{https://doi.org/10.1070/SM2011v202n11ABEH004203}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2907200}
\zmath{https://zbmath.org/?q=an:1248.20027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202.1661S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000299322800005}
\elib{https://elibrary.ru/item.asp?id=19066250}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856060987}
Linking options:
https://www.mathnet.ru/eng/sm7811
https://doi.org/10.1070/SM2011v202n11ABEH004203
https://www.mathnet.ru/eng/sm/v202/i11/p97
This publication is cited in the following 11 articles:
Coulon R., Steenbock M., “Product Set Growth in Burnside Groups”, J. Ecole Polytech.-Math., 9 (2022), 463–504
V. S. Atabekyan, H. T. Aslanyan, S. T. Aslanyan, “Powers of subsets in free periodic groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 56:2 (2022), 43–48
V. S. Atabekyan, V. G. Mikaelyan, “On the Product of Subsets in Periodic Groups”, J. Contemp. Mathemat. Anal., 57:6 (2022), 395
Yu-Miao Cui, Yue-Ping Jiang, Wen-Yuan Yang, “Lower bound on growth of non-elementary subgroups in relatively hyperbolic groups”, Journal of Group Theory, 2022
V. S. Atabekyan, V. G. Mikaelyan, “O proizvedenii podmnozhestv v pereodicheskikh gruppakh”, Proceedings of NAS RA. Mathematics, 2022, 12
Delzant T., Steenbock M., “Product Set Growth in Groups and Hyperbolic Geometry”, J. Topol., 13:3 (2020), 1183–1215
Tointon M., “Introduction to Approximate Groups”, Introduction to Approximate Groups, London Mathematical Society Student Texts, 94, Cambridge Univ Press, 2020, 1–205
Emmanuel Breuillard, The IMA Volumes in Mathematics and its Applications, 159, Recent Trends in Combinatorics, 2016, 369
J. O. Button, “Growth in infinite groups of infinite subsets”, Algebra Colloq., 22:2 (2015), 333–348
J. O. Button, “Explicit Helfgott type growth in free products and in limit groups”, J. Algebra, 389 (2013), 61–77
Emmanuel Breuillard, Ben Green, Terence Tao, Bolyai Society Mathematical Studies, 25, Erdős Centennial, 2013, 129