Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 12, Pages 1825–1830
DOI: https://doi.org/10.1070/SM2011v202n12ABEH004208
(Mi sm7801)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the measure of conformal difference between Euclidean and Lobachevsky spaces

V. A. Zorich

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Euclidean space $\mathbb R^n$ and Lobachevsky space $\mathbb H^n$ are known to be not equivalent either conformally or quasiconformally. In this work we give exact asymptotics of the critical order of growth at infinity for the quasiconformality coefficient of a diffeomorphism $f\colon \mathbb R^n\to\mathbb H^n$ for which such a mapping $f$ is possible. We also consider the general case of immersions $f\colon M^n\to N^n$ of conformally parabolic Riemannian manifolds.
Bibliography: 17 titles.
Keywords: quasiconformal mapping, Riemannian manifold, conformal type of a Riemannian manifold, Euclidean space, Lobachevsky space.
Received: 25.10.2010
Bibliographic databases:
Document Type: Article
UDC: 517.54+514.774
MSC: 30C65, 53C42
Language: English
Original paper language: Russian
Citation: V. A. Zorich, “On the measure of conformal difference between Euclidean and Lobachevsky spaces”, Sb. Math., 202:12 (2011), 1825–1830
Citation in format AMSBIB
\Bibitem{Zor11}
\by V.~A.~Zorich
\paper On the measure of conformal difference between Euclidean and Lobachevsky spaces
\jour Sb. Math.
\yr 2011
\vol 202
\issue 12
\pages 1825--1830
\mathnet{http://mi.mathnet.ru//eng/sm7801}
\crossref{https://doi.org/10.1070/SM2011v202n12ABEH004208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2919250}
\zmath{https://zbmath.org/?q=an:1264.30017}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202.1825Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300154400004}
\elib{https://elibrary.ru/item.asp?id=19066255}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857305928}
Linking options:
  • https://www.mathnet.ru/eng/sm7801
  • https://doi.org/10.1070/SM2011v202n12ABEH004208
  • https://www.mathnet.ru/eng/sm/v202/i12/p107
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:710
    Russian version PDF:298
    English version PDF:13
    References:66
    First page:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024