|
This article is cited in 1 scientific paper (total in 1 paper)
On the equation of an improper convex affine sphere:
a generalization of a theorem of Jörgens
V. N. Kokarev Samara State University
Abstract:
It is proved that if a function $\varphi(t)$ of variable $t>0$ belongs to the class
$C^{3,\alpha}$ and satisfies for sufficiently small positive $\varepsilon$
($\varepsilon<10^{-4}$) the conditions
\begin{gather*}
1-\varepsilon\leqslant\varphi(t)\leqslant1+\varepsilon,\qquad t>0,
\\
\begin{alignedat}{2}
|\varphi'(t)|&\leqslant\varepsilon\frac{\varphi(t)}t\,,&\qquad
t&\geqslant 2\sqrt{1-\varepsilon},
\\
|\varphi''(t)|&\leqslant\varepsilon\frac{\varphi(t)}{t^2}\,,&\qquad
t&\geqslant2\sqrt{1-\varepsilon},
\\
|\varphi'''(t)|&\leqslant\varepsilon\frac{\varphi(t)}{t^3}\,,&\qquad
t&\geqslant2\sqrt{1-\varepsilon},
\end{alignedat}
\end{gather*}
then every complete solution $z(x,y)$ of the equation $z_{xx}z_{yy}-z_{xy}^2=\varphi(z_{xx}+z_{yy})$
is a quadratic polynomial.
Received: 12.11.2001 and 26.08.2002
Citation:
V. N. Kokarev, “On the equation of an improper convex affine sphere:
a generalization of a theorem of Jörgens”, Sb. Math., 194:11 (2003), 1647–1663
Linking options:
https://www.mathnet.ru/eng/sm780https://doi.org/10.1070/SM2003v194n11ABEH000780 https://www.mathnet.ru/eng/sm/v194/i11/p65
|
Statistics & downloads: |
Abstract page: | 288 | Russian version PDF: | 162 | English version PDF: | 13 | References: | 59 | First page: | 1 |
|