Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 11, Pages 1647–1663
DOI: https://doi.org/10.1070/SM2003v194n11ABEH000780
(Mi sm780)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the equation of an improper convex affine sphere: a generalization of a theorem of Jörgens

V. N. Kokarev

Samara State University
References:
Abstract: It is proved that if a function $\varphi(t)$ of variable $t>0$ belongs to the class $C^{3,\alpha}$ and satisfies for sufficiently small positive $\varepsilon$ ($\varepsilon<10^{-4}$) the conditions
\begin{gather*} 1-\varepsilon\leqslant\varphi(t)\leqslant1+\varepsilon,\qquad t>0, \\ \begin{alignedat}{2} |\varphi'(t)|&\leqslant\varepsilon\frac{\varphi(t)}t\,,&\qquad t&\geqslant 2\sqrt{1-\varepsilon}, \\ |\varphi''(t)|&\leqslant\varepsilon\frac{\varphi(t)}{t^2}\,,&\qquad t&\geqslant2\sqrt{1-\varepsilon}, \\ |\varphi'''(t)|&\leqslant\varepsilon\frac{\varphi(t)}{t^3}\,,&\qquad t&\geqslant2\sqrt{1-\varepsilon}, \end{alignedat} \end{gather*}
then every complete solution $z(x,y)$ of the equation $z_{xx}z_{yy}-z_{xy}^2=\varphi(z_{xx}+z_{yy})$ is a quadratic polynomial.
Received: 12.11.2001 and 26.08.2002
Bibliographic databases:
UDC: 513.0+517.946
MSC: Primary 53A05, 53C45; Secondary 35B99
Language: English
Original paper language: Russian
Citation: V. N. Kokarev, “On the equation of an improper convex affine sphere: a generalization of a theorem of Jörgens”, Sb. Math., 194:11 (2003), 1647–1663
Citation in format AMSBIB
\Bibitem{Kok03}
\by V.~N.~Kokarev
\paper On the equation of an~improper convex affine sphere:
a~generalization of a~theorem of J\"orgens
\jour Sb. Math.
\yr 2003
\vol 194
\issue 11
\pages 1647--1663
\mathnet{http://mi.mathnet.ru//eng/sm780}
\crossref{https://doi.org/10.1070/SM2003v194n11ABEH000780}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2040665}
\zmath{https://zbmath.org/?q=an:1080.53010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220189500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1642408319}
Linking options:
  • https://www.mathnet.ru/eng/sm780
  • https://doi.org/10.1070/SM2003v194n11ABEH000780
  • https://www.mathnet.ru/eng/sm/v194/i11/p65
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:288
    Russian version PDF:162
    English version PDF:13
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024